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Path sampling: Metropolis probabilities

Consider a thermal average: 〈A〉 = 1
Z

R
dR A(R) ρ(R,R.β).

〈A〉 =
1

Z

Z
dRdR1 . . . dRM−1 A(R) e

−
MP

m=1
Sm

=

Z
DR̄ A(R) P(R̄)

For direct sampling of microstates {R̄} distributed with

P(R̄) = e−S(R̄)/Z ≡ e
−

MP
m=1

Sm

/Z

we need normalization factor Z - partition function.

Solution: use Metropolis algorithm to construct a sequence of microstates

T (R̄i , R̄f )

T (R̄f , R̄i )
=

P(R̄f )

P(R̄i )
=

P(R ′,R ′1, . . . ,R
′
M−1)

P(R,R1, . . . ,RM−1)
=

e
−

MP
m=1

S(R′
m)

/Z

e
−

MP
m=1

S(Rm)

/Z

Transition probability depends on change in the action between initial and
final state

T (R̄i , R̄f ) = min[1, e−[S(R̄f )−S(R̄i )]] = min[1, e−∆Skin−∆Sv ]
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Path sampling: local moves

We try to modify a path and accept by change in kinetic and potential
energies

T (R̄i , R̄f ) = min[1, e−∆Skin−∆Sv ]

Change of a single trajectory slice, rk → r′k , involves two pieces {rk−1, rk}
and {rk , rk+1} (for the i-trajectory: rk ≡ rk

i )

∆Skin =
π

λ2
D(τ)

h
(rk−1 − r′k)2 − (rk−1 − rk)2 + (r′k − rk+1)2 − (rk − rk+1)2

i
,

∆Sv = τ
X
i<j

h
V (r′ ki , r

′ k
ij )− V (rk

i , r
k
ij)
i

Problem: local sampling is stacked to a position of two fixed end-points ⇒
Exceedingly slow trajectory diffusion and large autocorrelation times.

r′kr′krkrk
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General Metropolis MC

We split transition probability T (R̄i , R̄f ) into sampling and acceptance:

T (R̄i , R̄f ) = P(R̄i , R̄f ) A(R̄i , R̄f )

P(R̄i , R̄f ) = sampling probability, now 6= P(R̄f , R̄i )

A(R̄i , R̄f ) = acceptance probability

The detail balance can be fulfilled with the choice

A(R̄i , R̄f ) = min

»
1,

P(R̄f , R̄i ) P(R̄f )

P(R̄i , R̄f ) P(R̄i )

–
= min

»
1,

P(R̄f , R̄i )

P(R̄i , R̄f )
e−∆Skin−∆Sv

–
Once again normalization of P(R̄) is not needed or used.
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General Metropolis MC
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–
Once again normalization of P(R̄) is not needed or used.

Example (2D Ising model): Address (M) number of down-spins and (N −M)
up-spins as two different species. Choose probability p± = 1/2 to update up-
or down-spins. Probability to select a spin for update: for the up-spins
Ps(N −M) = 1/(N −M), for down-spins Ps(M) = 1/M.

Acceptance to increase by one number of down-spins:

A(M → (M + 1)) =
p−Ps(M + 1)

p+Ps(N −M)
=

„
p−
p+

«„
N −M

M + 1

«
e−β(EM+1−EM )

At low temperatures: N � M ≈ N e−4Jβ∆si ⇒ N−M
M+1

� 1.
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General Metropolis MC
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Similar idea: choose the sampling probability to fulfill

P(R̄f , R̄i )

P(R̄i , R̄f )
= e+∆Skin

Then an ideal or weakly interacting systems A(R̄i , R̄f )→ 1.
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Path sampling: multi-slice moves

Consider a trajectory r̄ , for a free particle (V = 0), moving from r to r′ by
time pτ .

The probability to sample a particular trajectory
r̄ = {r(0), r1, . . . , rp−1, r′(pτ)} is a conditional probability constructed as a
product of the free-particle density matrices

T [r̄(r, r′, pτ)] =

p−1Y
m=0

ρF (rm, rm+1, τ), ρF (rm, rm+1, τ) =
1

λd
τ

e−π(rm−rm+1)2/λ2
τ

with r0 = r and rp = r′.

Now consider the probability to sample an arbitrary trajectory r̄

P(r̄) =
T [r̄(r, r′, pτ)]

N
=

T [r̄(r, r′, pτ)]

ρF (r, r′, pτ)

where the normalization N reduces to a free-particle density matrixX
r̄

T [r̄(r, r′, pτ)] =

Z
dr1 . . . drp−1T [r̄(r, r′, pτ)] = ρF (r, r′, pτ)
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Path sampling: multi-slice moves (continued)
Normalized sampling probability (of any trajectory) can be identically rewritten as

P(r̄) =
T [r̄(r, r′, pτ)]

ρF (r, r′, pτ)
=
ρF (r, r1, τ)ρF (r1, r′, (p − 1)τ)

ρF (r, r′, pτ)

× ρF (r1, r2, τ)ρF (r2, r′, (p − 2)τ)

ρF (r1, r′, (p − 1)τ)
. . .

ρF (rm−2, rm−1, τ)ρF (rm−1, r′, τ)

ρF (rm−2, r′, 2τ)
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Path sampling: multi-slice moves (continued)

x0

x6

k = 1

x1

k = 2

x2

k = 3

x3

k = 4

x4

k = 5

x5

output

P(r̄) =
ρF (x0, x1, τ)ρF (x1, x6, 5τ)

ρF (x0, x6, 6τ)
·ρF (x1, x2, τ)ρF (x2, x6, 4τ)

ρF (x1, x6, 5τ)
. . .

ρF (x4, x5, τ)ρF (x5, x6, τ)

ρF (x4, x6, 2τ)

Each term represents a normal (Gaussian) distribution around the mid-point x̄m and
variance σ2

m, m = 1, . . . , p − 1 (p = 6)

α =
p −m

p −m + 1
, x̄m = α xm−1 + (1− α) xp, σm =

r
α

2π
λτ



Path sampling: local and global moves Fermionic/bosonic density matrix Levy-construction and sampling of permutations Permutations and physical properties

Outline

1 Path sampling: local and global moves

2 Fermionic/bosonic density matrix

3 Levy-construction and sampling of permutations

4 Permutations and physical properties



Path sampling: local and global moves Fermionic/bosonic density matrix Levy-construction and sampling of permutations Permutations and physical properties

Fermionic/bosonic density matrix

For quantum systems only two symmetries of the states are allowed:
– density matrix is antisymmetric/symmetric under arbitrary exchange of
identical particles (e.g. electrons, holes, bosonic atoms): ρ̂→ ρ̂A/S for
fermions/bosons.

We use permutation operator P̂ to project out the correct states: construct
ρ̂A/S as superposition of all N! permutations

Diagonal density matrix: only closed trajectories → periodicity with T = n ·β

ρS/A(R(0),R(β);β) =
1

N!

N!X
P=1

(±1)δPρ(R(0), P̂R(β);β)

Example: pair exchange of two electrons and holes

P̂12(r1(β), r2(β), ..) = (rP̂1(β), rP̂2(β), ..) = (r2(β), r1(β), ..) = (r2(0), r1(0), ..).
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Antisymmetric density matrix: multi-component systems

Two-component system: spin polarized electrons and holes with particle
numbers Ne and Nh

ρA(Re ,Rh,Re ,Rh;β) = (Ne !Nh!)−1
Ne ! Nh!X

Pe ,Ph=1

(−1)δPe (−1)δPhρ(Re ,Rh, P̂eRe , P̂hRh;β)

Total number of permutations: N = Ne !× Nh!.

We try to reconnect the paths in different ways to form larger paths: form
multi-particle exchange.

This corresponds to sampling of different permutations in the sum
N!P

P=1

Number of permutations is significantly reduced using the Metropolis
algorithm and the importance sampling.
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Permutation-length distribution: T -dependence

System: Fully spin polarized N electrons
(or bosons) in 2D parabolic quantum dot.

Classical system: only identity
permutations.

Low temperatures T → 0: equal
probability of all permutation lengths.

Ideal bosons: threshold value estimates
condensate fraction.
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Levy-construction and pair exchange

0
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m

Select at random a path “i”

Select a time interval (β1, β5)
along the time axis β = Mτ .

Choose a particle“j” (green path)
from all neighbours Nf within a
distance of λ4τ .

Make two-particle exchange:
exchange the paths from β5 to β.

Sample new path points (r2
i(j), r

3
i(j), r

4
i(j)) using the probability P(r̄).

Find number of neighbours for the reverse move Nr and accept or reject

A(i → f ) = min

»
1,

Nr

Nf
e−∆SV

–

β1

β5
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Beyond two-particle exchange

Example: 5 fermions/bosons in 2D

Initial permutation state:

Two identity permutations (1)(2):
[r1(β) = r1(0), r2(β) = r2(0)].

Three-particle permutation (354):
[r3(β) = r5(0), r5(β) = r4(0)],

r4(β) = r3(0).

We can restore identity permutations by
two successive pair-transpositions:

P̂34(1)(2)(354)→ (1)(2)(3)(45),

P̂45(1)(2)(3)(45)→ (1)(2)(3)(4)(5)

or we can restore the initial permutation
state by

P̂34 P̂45(1)(2)(3)(4)(5) = (1)(2)(354)
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Beyond two-particle exchange

Any many-particle permutation can be constructed by a successive action of
the two-particle permutation operator P̂ij :

P̂ρdist({r1, . . . rN}, {r1, . . . rN}) =
Y
ij

P̂ij ρ
dist({r1, . . . rN}, {r1, . . . rN})

P̂ij ρ({r1, . . . rN}, {. . . , ri , . . . , rj , . . .}) = (±1) ρ({r1, . . . rN}, {. . . , rj , . . . , ri , . . .})
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Quantum degeneracy effects
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Density: n = 1/r̄ 3

Classical coupling parameter: Γ = 〈V 〉/kBT

Quantum coupling parameter: rs = 〈V 〉/E0, zero-point energy E0 = ~2

mr̄2

Degeneracy parameter: χ(n,T ) = nλ3
D(T ) ≥ 1 ⇒ λD(T ) ≥ r̄
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Permutations and physical properties

When system is degenerate permutations are important : λD(T ) ≥ r̄
(thermal wavelength is comparable with the inter-particle spacing)

Long permutations: relation to physical phenomena

Normal-superfluid phase transition in bosonic systems:
He4, para-hydrogen, cold neutral atomic gases, dipole molecule,
excitonic systems, etc.
Offdiagonal long-range order – condensation in momentum space
Spin effects in fermionic systems: superconductivity, Hunds rules
in quantum dots, etc.

Particles interaction (in “strong coupling” regime) can suppress the

degeneracy ⇒ quantum simulations without exchange:

He4 in solid phase
Wigner solids in 2D and 3D
Protons and ions in degenerate quantum plasmas
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