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Path sampling: local and global moves



Path sampling: local and global moves

o Consider a thermal average: (A) = % [ dR A(R) p(R, R.3).
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(A) = %/deRl...dRM—lA(R)e = :/DF?A(R) P(R)

@ For direct sampling of microstates {R} distributed with

- R - 5"
PRy=e*P/z=¢ =" /Z
we need normalization factor Z - partition function.
Solution: use Metropolis algorithm to construct a sequence of microstates
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o Transition probability depends on change in the action between initial and
final state

T(Ri, Re) = min[1, e_[s(kf)_s(r?")]] = min[1, e_AS“"”_ASV]



Path sampling: local and global moves

@ We try to modify a path and accept by change in kinetic and potential

energies o
T(Ri, Rr) = min[1, e*ASkfanSV]

@ Change of a single trajectory slice, ri — r, involves two pieces {rx_1,r«}

and {rq,ri1} (for the i-trajectory: ry = r¥)
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ASyin = () |:(rk71 — 1)’ = (re1 —r) 4 (e — ria)® — (re — rk+1)2] ,
AS, =3 [V ) - vk )]
i<j

Problem: local sampling is stacked to a position of two fixed end-points =
Exceedingly slow trajectory diffusion and large autocorrelation times.



Path sampling: local and global moves

@ We split transition probability T(R;, R¢) into sampling and acceptance:
T(Ri, Re) = P(Ri, Re) A(R:, Rr)
P(Ri, R¢) = sampling probability, now # P(R¢, R)
A(f_?,-7 I_?f) = acceptance probability

@ The detail balance can be fulfilled with the choice

P(Re, R)) P(R‘,«)} i [1 P(Rr,R)) —nsy,-as,

A(Ri, Rf) = min |1, === _
(Ri, Re) = min P(R, Rr) P(R;) P(R:, Rr)

Once again normalization of P(R) is not needed or used.



Path sampling: local and global moves

@ We split transition probability T(R;, R¢) into sampling and acceptance:
T(Ri,Re) = P(Ri, Re) A(Ri, Rr)
P(/_?,-, ,E(’,c) = sampling probability, now # P(I_?f, /_?,-)
A(R:, Rf) = acceptance probability

@ The detail balance can be fulfilled with the choice

PRRIPRY] [y PRR) ssas
P(Ri, Rf) P(Ry) P(Ri, Ry)
Once again normalization of P(R) is not needed or used.

@ Example (2D Ising model): Address (M) number of down-spins and (N — M)
up-spins as two different species. Choose probability p+ = 1/2 to update up-
or down-spins. Probability to select a spin for update: for the up-spins
Ps(N — M) =1/(N — M), for down-spins Ps(M) =1/M.

Acceptance to increase by one number of down-spins:

AM — (M + 1)) = % (&) (%) o BB —En)

At low temperatures: N > M ~ N e=*/P8%5 = TH > 1L

A(F\’,‘7 F\’f) = min 1,



Path sampling: local and global moves

@ We split transition probability T(,‘_?,-7 I_?f) into sampling and acceptance:
T(Ri,Re) = P(Ri, Rr) A(Ri, Rr)

(R,

(

@ The detail balance can be fulfilled with the choice

P(Ri, R¢) P(R;) "P(Ri, Rr)

i)
X!

¢) = sampling probability, now # P(Rr, R;)

>

i I_?f) = acceptance probability

A(f_:\’,‘7 /_?f) = min 1,

Once again normalization of P(R) is not needed or used.
@ Similar idea: choose the sampling probability to fulfill
P(":?ﬁf?i) — e+ASk,',,
P(Ri, R¥)

Then an ideal or weakly interacting systems A(R;, Rf) — 1.



Path sampling: local and global moves

o Consider a trajectory 7, for a free particle (V = 0), moving from r to v’ by
time pr.



Path sampling: local and global moves

o Consider a trajectory 7, for a free particle (V = 0), moving from r to v’ by
time pr.

@ The probability to sample a particular trajectory
7= {r(0),r',... ,r" 1 ¥'(p7)} is a conditional probability constructed as a
product of the free-particle density matrices

p—1
_ m m m _m 1 -7
T o] = [ or(e"r ™), e m) = e
m=0 T

mirm+1)2/)\i

with f® =rand r* =r'.



Path sampling: local and global moves

o Consider a trajectory 7, for a free particle (V = 0), moving from r to v’ by
time pr.

@ The probability to sample a particular trajectory
7= {r(0),r',... ,r" 1 ¥'(p7)} is a conditional probability constructed as a
product of the free-particle density matrices

p—1
1 _ m__ m+1y2 /2
- m _m+1 m _m+1 T A
TIF(e e pr)] = [ [ pr(r™ ™ 7). pr(e7 0™ ) = e
m=0 T
with r® =rand r” =7,
@ Now consider the probability to sample an arbitrary trajectory ¥

__ T[F(r,v',p7)] _ T[F(r,¥', p7)]
PO = =N = prtrr. o)

where the normalization N reduces to a free-particle density matrix

Z TF(r, v, p7)] = /dr1 o dPTETR(r Y pr)] = pE(r, Y, pT)



Path sampling: local and global moves

Normalized sampling probability (of any trajectory) can be identically rewritten as

7) — T[T’(I’,I'/,p’r)] _ p,c(l', r! T)/’F( F r (p ) )
Py = pe(r ¥, pr) pr(r, v, pr)

m2m ml/)

pe(rt, P, )pr (P (p=2)7)  pr(r™ 2™ T)pe(r T

X
pr(rt, v, (p—1)7) pr(rm=2,r,27)




Path sampling: local and global moves

P(F) = pr(x0, X1, T)pe(>1, %6, 57) pr(x1, %2, T)pr(x2, X6, 47)  pr(>a, x5, 7)pr (x5, X6, 7)
PF (X0, X6, 67) pr(x1,%6,57) o PF(Xa, X6, 2T7)

Each term represents a normal (Gaussian) distribution around the mid-point X, and
variance 62, m=1,...,p—1 (p = 6)
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Fermionic/bosonic density matrix




Fermionic/bosonic density matrix

@ For quantum systems only two symmetries of the states are allowed:
— density matrix is antisymmetric/symmetric under arbitrary exchange of

identical particles (e.g. electrons, holes, bosonic atoms): p — 3 for
fermions/bosons.

@ We use permutation operator :‘5 to project out the correct states: construct

ﬁA/S as superposition of all N! permutations

@ Diagonal density matrix: only closed trajectories — periodicity with T =n- g
NI
1 "
p*/*(R(0), R(8): B) = 17 D_(E1)""n(R(0), PR(8); )
T P=1
Example: pair exchange of two electrons and holes

Pra(ri(B),r2(8), ) = (rp1(8), 1p5(B), ) = (r2(B), 11(8), ..) = (r2(0),r1(0), ..).



Fermionic/bosonic density matrix

@ Two-component system: spin polarized electrons and holes with particle
numbers Ne and N,

Ne! Nj!
P (Re, R, Re, Ry 8) = (Ne!N) ™" D (=1)""(=1)"" p(Re, Ry, PeRe, Py R; )

Pe,Pp=1

Total number of permutations: N = N.! x N,!.

@ We try to reconnect the paths in different ways to form larger paths: form
multi-particle exchange.

!
@ This corresponds to sampling of different permutations in the sum 3
P=1
@ Number of permutations is significantly reduced using the Metropolis
algorithm and the importance sampling.



Permutation probability

Temperature, T
125K
--- 625K
—e— 208 mK
—o—104 mK

Condensate fraction

System: Fully spin polarized N electrons
(or bosons) in 2D parabolic quantum dot.

Classical system: only identity
permutations.

Low temperatures T — 0: equal
probability of all permutation lengths.

Ideal bosons: threshold value estimates
condensate fraction.



Levy-construction and sampling of permutations



Levy-construction and sampling of permutations
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O Select at random a path *“

/ @ Select a time interval (01, (5)
Bs st < along the time axis 3 = Mr.
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Levy-construction and sampling of permutations

wm

@ Select at random a path *“i

@ Select a time interval (51, (5)
Bs sp along the time axis 3 = M.

m 4

W

@ Choose a particle”j" (green path)
from all neighbours N¢ within a
distance of A4-.

B1 1




Levy-construction and sampling of permutations

wm

@ Select at random a path *“i

@ Select a time interval (51, (5)
< along the time axis 3 = M.

Bs st

m 4

W

@ Choose a particle”j" (green path)
from all neighbours N¢ within a
distance of A4-.
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Levy-construction and sampling of permutations

M . s s M . e
7 /‘ / ! /‘ @ Select at random a path “i"
e ® \ @ Select a time interval (51, (5)
Bs sp st . along the time axis 3 = M.
m 4 ma @ Choose a particle”j" (green path)
3t \ ] 3t from all neighbours N¢ within a
) ) distance of A\4-.
B11 ] 1 N @ Make two-particle exchange:
. \ . [ exchange the paths from (5 to 3.



Levy-construction and sampling of permutations

Bs st

m 4

B11

@ Select at random a path *“i

wm

Select a time interval (51, (5)
along the time axis 3 = M.

W

Choose a particle"j” (green path)
from all neighbours N¢ within a
distance of A\4-.

Make two-particle exchange:
exchange the paths from (5 to 3.

@ Sample new path points (r,?w, r?(j),rj-‘(j)) using the probability P(F).



Levy-construction and sampling of permutations

Bs st

m 4

B11

@ Select at random a path *“i

wm

Select a time interval (51, (5)
along the time axis 3 = M.

W

Choose a particle"j” (green path)
from all neighbours N¢ within a
distance of A\4-.

Make two-particle exchange:
exchange the paths from (5 to 3.

@ Sample new path points (r,?w, r?(j),rj-‘(j)) using the probability P(F).



Levy-construction and sampling of permutations

Bs sf
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B11
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along the time axis 3 = M.
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Choose a particlej” (green path)
from all neighbours N¢ within a
distance of A\4-.

Make two-particle exchange:
exchange the paths from (5 to 3.

@ Sample new path points (r?(j), r?(j),r?(j)) using the probability P(F).



Levy-construction and sampling of permutations

Bs sf

m 4

B11

wm

Select at random a path */

Select a time interval (01, (5)
along the time axis 3 = M.

wen

Choose a particlej” (green path)
from all neighbours N¢ within a
distance of A\4-.

Make two-particle exchange:
exchange the paths from (5 to 3.

@ Sample new path points (r?(j), r?(j),r?(j)) using the probability P(F).



Levy-construction and sampling of permutations

M ° ° °
7 /‘ / / Select at random a path “/”
° Select a time interval (01, (5)

Bs st » along the time axis 3 = Mr.

m e Choose a particle*j” (green path)
3t \ ] / from all neighbours N¢ within a
R / distance of A4r.

Br1 ] I\ Make two-particle exchange:
. \ exchange the paths from (5 to 3.

@ Sample new path points (r?(j), r?(j),r?(j)) using the probability P(F).

@ Find number of neighbours for the reverse move N, and accept or reject

A(i — f) = min {1, Me*ASV}
N¢



Levy-construction and sampling of permutations

Example: 5 fermions/bosons in 2D

. ; ; — Initial permutation state:
20l a) XY plane | o Two i ) ) .
wo identity permutations (1)(2):
[r1(8) = r1(0), r2(B) = r2(0)].
@ Three-particle permutation (354):
[r3(8) = rs(0), rs(3) = r4(0)],
1 ra(B) =r3(0).
We can restore identity permutations by
two successive pair-transpositions:

] P1a(1)(2)(354) — (1)(2)(3)(45),
Pas(1)(2)(3)(45) — (1)(2)(3)(4)(5)

L or we can restore the initial permutation
-1.0 L 1 L 1 L 1 L 1 L 1 L state by

Psa Pas(1)(2)(3)(4)(5) = (1)(2)(354)




Levy-construction and sampling of permutations

@ Any many-particle permutation can be constructed by a successive action of
the two-particle permutation operator Pj:

Pp®st({ry,...en}, {r1, ... en}) = H Py p™ ({r,...vn}, {r1,...tn})

IS,'J'/)({I’l,...I’N},{...,I’,‘,...,I’j,...}):(:tl)p({l’l,...I’N},{...,I’j,...,l’,‘,...})



Levy-construction and sampling of permutations

quantum
ispics

temperature, log,, T" (K)

15 20 25 30
carrier density, log;on (em™3)

Density: n=1/7°

Classical coupling parameter: I = (V) /kg T

Quantum coupling parameter: r; = (V)/Eq, zero-point energy Eq =
Degeneracy parameter: x(n, T) = n\y(T)>1 = Ap(T)>F

mr2






@ When system is degenerate permutations are important : Ap(T) > 7
(thermal wavelength is comparable with the inter-particle spacing)

@ Long permutations: relation to physical phenomena

o Normal-superfluid phase transition in bosonic systems:
He*, para-hydrogen, cold neutral atomic gases, dipole molecule,
excitonic systems, etc.

o Offdiagonal long-range order — condensation in momentum space

o Spin effects in fermionic systems: superconductivity, Hunds rules
in quantum dots, etc.

0 Particles interaction (in “strong coupling” regime) can suppress the
degeneracy = quantum simulations without exchange:

o He* in solid phase
o Wigner solids in 2D and 3D
o Protons and ions in degenerate quantum plasmas
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