Introduction to Path Integral Monte Carlo. Part II.

Alexey Filinov, Michael Bonitz
Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

November 14, 2008

Outline

(1) Path sampling: local and global moves
(2) Fermionic/bosonic density matrix

3 Levy-construction and sampling of permutations

4 Permutations and physical properties

Outline

(1) Path sampling: local and global movesFermionic/bosonic density matrixLevy-construction and sampling of permutationsPermutations and physical properties

Path sampling: Metropolis probabilities

- Consider a thermal average: $\langle A\rangle=\frac{1}{Z} \int d R A(R) \rho(R, R . \beta)$.

$$
\langle A\rangle=\frac{1}{Z} \int d R d R_{1} \ldots d R_{M-1} A(R) e^{-\sum_{m=1}^{M} s^{m}}=\int D \bar{R} A(R) P(\bar{R})
$$

- For direct sampling of microstates $\{\bar{R}\}$ distributed with

$$
P(\bar{R})=e^{-S(\bar{R})} / Z \equiv e^{-\sum_{m=1}^{M} S^{m}} / Z
$$

we need normalization factor Z - partition function.
Solution: use Metropolis algorithm to construct a sequence of microstates

$$
\frac{T\left(\bar{R}_{i}, \bar{R}_{f}\right)}{T\left(\bar{R}_{f}, \bar{R}_{i}\right)}=\frac{P\left(\bar{R}_{f}\right)}{P\left(\bar{R}_{i}\right)}=\frac{P\left(R^{\prime}, R_{1}^{\prime}, \ldots, R_{M-1}^{\prime}\right)}{P\left(R, R_{1}, \ldots, R_{M-1}\right)}=\frac{e^{-\sum_{m=1}^{M} S\left(R_{m}^{\prime}\right)} / Z}{e^{-\sum_{m=1}^{M} S\left(R_{m}\right)} / Z}
$$

- Transition probability depends on change in the action between initial and final state

$$
T\left(\bar{R}_{i}, \bar{R}_{f}\right)=\min \left[1, e^{-\left[S\left(\bar{R}_{f}\right)-S\left(\bar{R}_{i}\right)\right]}\right]=\min \left[1, e^{-\Delta S_{k i n}-\Delta S_{v}}\right]
$$

Path sampling: local moves

- We try to modify a path and accept by change in kinetic and potential energies

$$
T\left(\bar{R}_{i}, \bar{R}_{f}\right)=\min \left[1, e^{-\Delta S_{k i n}-\Delta S_{v}}\right]
$$

- Change of a single trajectory slice, $\mathbf{r}_{k} \rightarrow \mathbf{r}_{k}^{\prime}$, involves two pieces $\left\{\mathbf{r}_{k-1}, \mathbf{r}_{k}\right\}$ and $\left\{\mathbf{r}_{k}, \mathbf{r}_{k+1}\right\}$ (for the i-trajectory: $\mathbf{r}_{k} \equiv \mathbf{r}_{i}^{k}$)

$$
\begin{aligned}
& \Delta S_{k i n}=\frac{\pi}{\lambda_{D}^{2}(\tau)}\left[\left(\mathbf{r}_{k-1}-\mathbf{r}_{k}^{\prime}\right)^{2}-\left(\mathbf{r}_{k-1}-\mathbf{r}_{k}\right)^{2}+\left(\mathbf{r}_{k}^{\prime}-\mathbf{r}_{k+1}\right)^{2}-\left(\mathbf{r}_{k}-\mathbf{r}_{k+1}\right)^{2}\right] \\
& \Delta S_{v}=\tau \sum_{i<j}\left[V\left(\mathbf{r}_{i}^{\prime k}, \mathbf{r}_{i j}^{\prime k}\right)-V\left(\mathbf{r}_{i}^{k}, \mathbf{r}_{i j}^{k}\right)\right]
\end{aligned}
$$

Problem: local sampling is stacked to a position of two fixed end-points \Rightarrow Exceedingly slow trajectory diffusion and large autocorrelation times.

General Metropolis MC

- We split transition probability $T\left(\bar{R}_{i}, \bar{R}_{f}\right)$ into sampling and acceptance:

$$
\begin{aligned}
& T\left(\bar{R}_{i}, \bar{R}_{f}\right)=P\left(\bar{R}_{i}, \bar{R}_{f}\right) A\left(\bar{R}_{i}, \bar{R}_{f}\right) \\
& P\left(\bar{R}_{i}, \bar{R}_{f}\right)=\text { sampling probability, now } \neq P\left(\bar{R}_{f}, \bar{R}_{i}\right) \\
& A\left(\bar{R}_{i}, \bar{R}_{f}\right)=\text { acceptance probability }
\end{aligned}
$$

- The detail balance can be fulfilled with the choice

$$
A\left(\bar{R}_{i}, \bar{R}_{f}\right)=\min \left[1, \frac{P\left(\bar{R}_{f}, \bar{R}_{i}\right) P\left(\bar{R}_{f}\right)}{P\left(\bar{R}_{i}, \bar{R}_{f}\right) P\left(\bar{R}_{i}\right)}\right]=\min \left[1, \frac{P\left(\bar{R}_{f}, \bar{R}_{i}\right)}{P\left(\bar{R}_{i}, \bar{R}_{f}\right)} e^{-\Delta s_{k i n}-\Delta s_{v}}\right]
$$

Once again normalization of $P(\bar{R})$ is not needed or used.

General Metropolis MC

- We split transition probability $T\left(\bar{R}_{i}, \bar{R}_{f}\right)$ into sampling and acceptance:

$$
\begin{aligned}
& T\left(\bar{R}_{i}, \bar{R}_{f}\right)=P\left(\bar{R}_{i}, \bar{R}_{f}\right) A\left(\bar{R}_{i}, \bar{R}_{f}\right) \\
& P\left(\bar{R}_{i}, \bar{R}_{f}\right)=\text { sampling probability, now } \neq P\left(\bar{R}_{f}, \bar{R}_{i}\right) \\
& A\left(\bar{R}_{i}, \bar{R}_{f}\right)=\text { acceptance probability }
\end{aligned}
$$

- The detail balance can be fulfilled with the choice

$$
A\left(\bar{R}_{i}, \bar{R}_{f}\right)=\min \left[1, \frac{P\left(\bar{R}_{f}, \bar{R}_{i}\right) P\left(\bar{R}_{f}\right)}{P\left(\bar{R}_{i}, \bar{R}_{f}\right) P\left(\bar{R}_{i}\right)}\right]=\min \left[1, \frac{P\left(\bar{R}_{f}, \bar{R}_{i}\right)}{P\left(\bar{R}_{i}, \bar{R}_{f}\right)} e^{-\Delta s_{k i n}-\Delta S_{v}}\right]
$$

Once again normalization of $P(\bar{R})$ is not needed or used.

- Example (2D Ising model): Address (M) number of down-spins and ($N-M$) up-spins as two different species. Choose probability $p_{ \pm}=1 / 2$ to update upor down-spins. Probability to select a spin for update: for the up-spins $P_{s}(N-M)=1 /(N-M)$, for down-spins $P_{s}(M)=1 / M$.
Acceptance to increase by one number of down-spins:

$$
A(M \rightarrow(M+1))=\frac{p_{-} P_{s}(M+1)}{p_{+} P_{s}(N-M)}=\left(\frac{p_{-}}{p_{+}}\right)\left(\frac{N-M}{M+1}\right) e^{-\beta\left(E_{M+1}-E_{M}\right)}
$$

At low temperatures: $N \gg M \approx N e^{-4 J \beta \Delta s_{i}} \Rightarrow \frac{N-M}{M+1} \gg 1$.

General Metropolis MC

- We split transition probability $T\left(\bar{R}_{i}, \bar{R}_{f}\right)$ into sampling and acceptance:

$$
\begin{aligned}
& T\left(\bar{R}_{i}, \bar{R}_{f}\right)=P\left(\bar{R}_{i}, \bar{R}_{f}\right) A\left(\bar{R}_{i}, \bar{R}_{f}\right) \\
& P\left(\bar{R}_{i}, \bar{R}_{f}\right)=\text { sampling probability, now } \neq P\left(\bar{R}_{f}, \bar{R}_{i}\right) \\
& A\left(\bar{R}_{i}, \bar{R}_{f}\right)=\text { acceptance probability }
\end{aligned}
$$

- The detail balance can be fulfilled with the choice

$$
A\left(\bar{R}_{i}, \bar{R}_{f}\right)=\min \left[1, \frac{P\left(\bar{R}_{f}, \bar{R}_{i}\right) P\left(\bar{R}_{f}\right)}{P\left(\bar{R}_{i}, \bar{R}_{f}\right) P\left(\bar{R}_{i}\right)}\right]=\min \left[1, \frac{P\left(\bar{R}_{f}, \bar{R}_{i}\right)}{P\left(\bar{R}_{i}, \bar{R}_{f}\right)} e^{-\Delta s_{k i n}-\Delta s_{v}}\right]
$$

Once again normalization of $P(\bar{R})$ is not needed or used.

- Similar idea: choose the sampling probability to fulfill

$$
\frac{P\left(\bar{R}_{f}, \bar{R}_{i}\right)}{P\left(\bar{R}_{i}, \bar{R}_{f}\right)}=e^{+\Delta s_{k i n}}
$$

Then an ideal or weakly interacting systems $A\left(\bar{R}_{i}, \bar{R}_{f}\right) \rightarrow 1$.

Path sampling: multi-slice moves

- Consider a trajectory \bar{r}, for a free particle $(V=0)$, moving from \mathbf{r} to \mathbf{r}^{\prime} by time $p \tau$.

Path sampling: multi-slice moves

- Consider a trajectory \bar{r}, for a free particle $(V=0)$, moving from \mathbf{r} to \mathbf{r}^{\prime} by time $p \tau$.
- The probability to sample a particular trajectory $\bar{r}=\left\{\mathbf{r}(0), \mathbf{r}^{1}, \ldots, \mathbf{r}^{p-1}, \mathbf{r}^{\prime}(p \tau)\right\}$ is a conditional probability constructed as a product of the free-particle density matrices

$$
T\left[\bar{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)\right]=\prod_{m=0}^{p-1} \rho_{F}\left(\mathbf{r}^{m}, \mathbf{r}^{m+1}, \tau\right), \quad \rho_{F}\left(\mathbf{r}^{m}, \mathbf{r}^{m+1}, \tau\right)=\frac{1}{\lambda_{\tau}^{d}} e^{-\pi\left(\mathbf{r}^{m}-\mathbf{r}^{m+1}\right)^{2} / \lambda_{\tau}^{2}}
$$

with $\mathbf{r}^{0}=\mathbf{r}$ and $\mathbf{r}^{p}=\mathbf{r}^{\prime}$.

Path sampling: multi-slice moves

- Consider a trajectory \bar{r}, for a free particle $(V=0)$, moving from \mathbf{r} to \mathbf{r}^{\prime} by time $p \tau$.
- The probability to sample a particular trajectory $\bar{r}=\left\{\mathbf{r}(0), \mathbf{r}^{1}, \ldots, \mathbf{r}^{p-1}, \mathbf{r}^{\prime}(p \tau)\right\}$ is a conditional probability constructed as a product of the free-particle density matrices

$$
T\left[\bar{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)\right]=\prod_{m=0}^{p-1} \rho_{F}\left(\mathbf{r}^{m}, \mathbf{r}^{m+1}, \tau\right), \quad \rho_{F}\left(\mathbf{r}^{m}, \mathbf{r}^{m+1}, \tau\right)=\frac{1}{\lambda_{\tau}^{d}} e^{-\pi\left(\mathbf{r}^{m}-\mathbf{r}^{m+1}\right)^{2} / \lambda_{\tau}^{2}}
$$

with $\mathbf{r}^{0}=\mathbf{r}$ and $\mathbf{r}^{p}=\mathbf{r}^{\prime}$.

- Now consider the probability to sample an arbitrary trajectory \bar{r}

$$
P(\bar{r})=\frac{T\left[\bar{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)\right]}{N}=\frac{T\left[\bar{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)\right]}{\rho_{F}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)}
$$

where the normalization N reduces to a free-particle density matrix

$$
\sum_{\bar{r}} T\left[\bar{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)\right]=\int d \mathbf{r}^{1} \ldots d \mathbf{r}^{p-1} T\left[\bar{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)\right]=\rho_{F}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)
$$

Path sampling: multi-slice moves (continued)

Normalized sampling probability (of any trajectory) can be identically rewritten as

$$
\begin{aligned}
& P(\bar{r})=\frac{T\left[\bar{r}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)\right]}{\rho_{F}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)}=\frac{\rho_{F}\left(\mathbf{r}, \mathbf{r}^{1}, \tau\right) \rho_{F}\left(\mathbf{r}^{1}, \mathbf{r}^{\prime},(p-1) \tau\right)}{\rho_{F}\left(\mathbf{r}, \mathbf{r}^{\prime}, p \tau\right)} \\
& \times \frac{\rho_{F}\left(\mathbf{r}^{1}, \mathbf{r}^{2}, \tau\right) \rho_{F}\left(\mathbf{r}^{2}, \mathbf{r}^{\prime},(p-2) \tau\right)}{\rho_{F}\left(\mathbf{r}^{1}, \mathbf{r}^{\prime},(p-1) \tau\right)} \ldots \frac{\rho_{F}\left(\mathbf{r}^{m-2}, \mathbf{r}^{m-1}, \tau\right) \rho_{F}\left(\mathbf{r}^{m-1}, \mathbf{r}^{\prime}, \tau\right)}{\rho_{F}\left(\mathbf{r}^{m-2}, \mathbf{r}^{\prime}, 2 \tau\right)}
\end{aligned}
$$

Path sampling: multi-slice moves (continued)

$$
P(\bar{r})=\frac{\rho_{F}\left(x_{0}, x_{1}, \tau\right) \rho_{F}\left(x_{1}, x_{6}, 5 \tau\right)}{\rho_{F}\left(x_{0}, x_{6}, 6 \tau\right)} \cdot \frac{\rho_{F}\left(x_{1}, x_{2}, \tau\right) \rho_{F}\left(x_{2}, x_{6}, 4 \tau\right)}{\rho_{F}\left(x_{1}, x_{6}, 5 \tau\right)} \ldots \frac{\rho_{F}\left(x_{4}, x_{5}, \tau\right) \rho_{F}\left(x_{5}, x_{6}, \tau\right)}{\rho_{F}\left(x_{4}, x_{6}, 2 \tau\right)}
$$

Each term represents a normal (Gaussian) distribution around the mid-point \bar{x}_{m} and variance $\sigma_{m}^{2}, m=1, \ldots, p-1(p=6)$

$$
\alpha=\frac{p-m}{p-m+1}, \quad \bar{x}_{m}=\alpha x_{m-1}+(1-\alpha) x_{p}, \quad \sigma_{m}=\sqrt{\frac{\alpha}{2 \pi}} \lambda_{\tau}
$$

$k=4$
$k=5$

output

Outline

Path sampling: local and global movesFermionic/bosonic density matrixLevy-construction and sampling of permutationsPermutations and physical properties

Fermionic/bosonic density matrix

- For quantum systems only two symmetries of the states are allowed:
- density matrix is antisymmetric/symmetric under arbitrary exchange of identical particles (e.g. electrons, holes, bosonic atoms): $\hat{\rho} \rightarrow \hat{\rho}^{A / S}$ for fermions/bosons.
- We use permutation operator \hat{P} to project out the correct states: construct $\hat{\rho}^{A / S}$ as superposition of all N ! permutations
- Diagonal density matrix: only closed trajectories \rightarrow periodicity with $T=n \cdot \beta$

$$
\rho^{S / A}(R(0), R(\beta) ; \beta)=\frac{1}{N!} \sum_{P=1}^{N!}(\pm 1)^{\delta P} \rho(R(0), \hat{P} R(\beta) ; \beta)
$$

Example: pair exchange of two electrons and holes

$$
\hat{P}_{12}\left(\mathbf{r}_{1}(\beta), \mathbf{r}_{2}(\beta), . .\right)=\left(\mathbf{r}_{\hat{P}_{1}}(\beta), \mathbf{r}_{\hat{P}_{2}}(\beta), . .\right)=\left(\mathbf{r}_{2}(\beta), \mathbf{r}_{1}(\beta), . .\right)=\left(\mathbf{r}_{2}(0), \mathbf{r}_{1}(0), . .\right)
$$

Antisymmetric density matrix: multi-component systems

- Two-component system: spin polarized electrons and holes with particle numbers N_{e} and N_{h}
$\rho^{A}\left(R_{e}, R_{h}, R_{e}, R_{h} ; \beta\right)=\left(N_{e}!N_{h}!\right)^{-1} \sum_{P_{e}, P_{h}=1}^{N_{e}!N_{h}!}(-1)^{\delta P_{e}}(-1)^{\delta P_{h}} \rho\left(R_{e}, R_{h}, \hat{P}_{e} R_{e}, \hat{P}_{h} R_{h} ; \beta\right)$
Total number of permutations: $N=N_{e}!\times N_{h}!$.
- We try to reconnect the paths in different ways to form larger paths: form multi-particle exchange.
- This corresponds to sampling of different permutations in the sum $\sum_{P=1}^{N!}$
- Number of permutations is significantly reduced using the Metropolis algorithm and the importance sampling.

Permutation-length distribution: T -dependence

- System: Fully spin polarized N electrons (or bosons) in 2D parabolic quantum dot.
- Classical system: only identity permutations.
- Low temperatures $T \rightarrow 0$: equal probability of all permutation lengths.
- Ideal bosons: threshold value estimates condensate fraction.

Outline

Path sampling: local and global movesFermionic/bosonic density matrix

Levy-construction and sampling of permutationsPermutations and physical properties

Levy-construction and pair exchange

- Select at random a path " i "
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.

Levy-construction and pair exchange

- Select at random a path "i"
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.

Levy-construction and pair exchange

- Select at random a path " i "
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.

Levy-construction and pair exchange

- Select at random a path "i"
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.
- Make two-particle exchange: exchange the paths from β_{5} to β.

Levy-construction and pair exchange

- Select at random a path "i"
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.
- Make two-particle exchange: exchange the paths from β_{5} to β.
- Sample new path points $\left(\mathbf{r}_{i(j)}^{2}, \mathbf{r}_{i(j)}^{3}, \mathbf{r}_{i(j)}^{4}\right)$ using the probability $P(\bar{r})$.

Levy-construction and pair exchange

- Select at random a path "i"
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.
- Make two-particle exchange: exchange the paths from β_{5} to β.
- Sample new path points $\left(\mathbf{r}_{i(j)}^{2}, \mathbf{r}_{i(j)}^{3}, \mathbf{r}_{i(j)}^{4}\right)$ using the probability $P(\bar{r})$.

Levy-construction and pair exchange

- Select at random a path "i"
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.
- Make two-particle exchange: exchange the paths from β_{5} to β.
- Sample new path points $\left(\mathbf{r}_{i(j)}^{2}, \mathbf{r}_{i(j)}^{3}, \mathbf{r}_{i(j)}^{4}\right)$ using the probability $P(\bar{r})$.

Levy-construction and pair exchange

- Select at random a path "i"
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.
- Make two-particle exchange: exchange the paths from β_{5} to β.
- Sample new path points $\left(\mathbf{r}_{i(j)}^{2}, \mathbf{r}_{i(j)}^{3}, \mathbf{r}_{i(j)}^{4}\right)$ using the probability $P(\bar{r})$.

Levy-construction and pair exchange

- Select at random a path " i "
- Select a time interval $\left(\beta_{1}, \beta_{5}\right)$ along the time axis $\beta=M \tau$.
- Choose a particle"j" (green path) from all neighbours N_{f} within a distance of $\lambda_{4 \tau}$.
- Make two-particle exchange: exchange the paths from β_{5} to β.
- Sample new path points $\left(\mathbf{r}_{i(j)}^{2}, \mathbf{r}_{i(j)}^{3}, \mathbf{r}_{i(j)}^{4}\right)$ using the probability $P(\bar{r})$.
- Find number of neighbours for the reverse move N_{r} and accept or reject

$$
A(i \rightarrow f)=\min \left[1, \frac{N_{r}}{N_{f}} e^{-\Delta S_{V}}\right]
$$

Beyond two-particle exchange

Example: 5 fermions/bosons in 2D Initial permutation state:

- Two identity permutations (1)(2):

$$
\left[\mathbf{r}_{1}(\beta)=\mathbf{r}_{1}(0), \mathbf{r}_{2}(\beta)=\mathbf{r}_{2}(0)\right] .
$$

- Three-particle permutation (354):

$$
\begin{aligned}
& {\left[\mathbf{r}_{3}(\beta)=\mathbf{r}_{5}(0), \mathbf{r}_{5}(\beta)=\mathbf{r}_{4}(0)\right],} \\
& \mathbf{r}_{4}(\beta)=\mathbf{r}_{3}(0) .
\end{aligned}
$$

We can restore identity permutations by two successive pair-transpositions:

$$
\begin{aligned}
& \hat{P}_{34}(1)(2)(354) \rightarrow(1)(2)(3)(45), \\
& \hat{P}_{45}(1)(2)(3)(45) \rightarrow(1)(2)(3)(4)(5)
\end{aligned}
$$

or we can restore the initial permutation state by

$$
\hat{P}_{34} \hat{P}_{45}(1)(2)(3)(4)(5)=(1)(2)(354)
$$

Beyond two-particle exchange

- Any many-particle permutation can be constructed by a successive action of the two-particle permutation operator $\hat{P}_{i j}$:

$$
\begin{aligned}
& \hat{P} \rho^{\text {dist }}\left(\left\{\mathbf{r}_{1}, \ldots \mathbf{r}_{N}\right\},\left\{\mathbf{r}_{1}, \ldots \mathbf{r}_{N}\right\}\right)=\prod_{i j} \hat{P}_{i j} \rho^{\text {dist }}\left(\left\{\mathbf{r}_{1}, \ldots \mathbf{r}_{N}\right\},\left\{\mathbf{r}_{1}, \ldots \mathbf{r}_{N}\right\}\right) \\
& \hat{P}_{i j} \rho\left(\left\{\mathbf{r}_{1}, \ldots \mathbf{r}_{N}\right\},\left\{\ldots, \mathbf{r}_{i}, \ldots, \mathbf{r}_{j}, \ldots\right\}\right)=(\pm 1) \rho\left(\left\{\mathbf{r}_{1}, \ldots \mathbf{r}_{N}\right\},\left\{\ldots, \mathbf{r}_{j}, \ldots, \mathbf{r}_{i}, \ldots\right\}\right)
\end{aligned}
$$

Quantum degeneracy effects

Density: $n=1 / \bar{r}^{3}$
Classical coupling parameter: $\Gamma=\langle V\rangle / k_{B} T$
Quantum coupling parameter: $r_{s}=\langle V\rangle / E_{0}$, zero-point energy $E_{0}=\frac{\hbar^{2}}{m \bar{r}^{2}}$
Degeneracy parameter: $\chi(n, T)=n \lambda_{D}^{3}(T) \geq 1 \quad \Rightarrow \lambda_{D}(T) \geq \bar{r}$

Outline

Path sampling: local and global movesFermionic/bosonic density matrixLevy-construction and sampling of permutationsPermutations and physical properties

Permutations and physical properties

- When system is degenerate permutations are important: $\lambda_{D}(T) \geq \bar{r}$ (thermal wavelength is comparable with the inter-particle spacing)
- Long permutations: relation to physical phenomena
- Normal-superfluid phase transition in bosonic systems: He^{4}, para-hydrogen, cold neutral atomic gases, dipole molecule, excitonic systems, etc.
- Offdiagonal long-range order - condensation in momentum space
- Spin effects in fermionic systems: superconductivity, Hunds rules in quantum dots, etc.
- Particles interaction (in "strong coupling" regime) can suppress the degeneracy \Rightarrow quantum simulations without exchange:
- He^{4} in solid phase
- Wigner solids in 2D and 3D
- Protons and ions in degenerate quantum plasmas

