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Examples: Superfluidity

Superfluidity: loss of viscosity of
interacting bosons below critical
temperature. Discovered in liquid 4He
(P.L.Kapitza, 1938).

Rotating bucket experiment
(Andronikashvili):

T > TBKT :

Spontaneous creation of vortices by
thermal excitation. Vanishing of
superfluid density.
Uniform 2D system: Superfluid -
normal fluid phase transition at
critical temperature TBKT

(Berezinskii, Kosterlitz, Thouless):

kBTBKT = ρs
π~2

2m2
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Computation of superfluid fraction γsf

Two-fluid model (Landau):
Only normal fluid component of a
liquid responds to slow rotation of the
container walls.

Quantum mechanical moment of inertia Iqm deviates from classical
expectation value Iclass → non-classical rotational inertia (NCRI)

γsf = 1− Iqm

Iclass
, Iqm =

d〈L̂z〉
dω

, Iclass =
NX

i=1

mi r
2
i

Hamiltonian in the rotating frame:

Ĥω = Ĥ0 − ωL̂z , 〈L̂z〉 = Tr[L̂z e−βĤω ], L̂z =
NX

i=1

(xi piy − yi pix)

Derivative of the exponential operator

de−βĤω

dω
=

MX
k=1

e−(k−1)τ Ĥω de−τ Ĥω

dω
e−(M−k)τ Ĥω =

βZ
0

dte−tĤω dĤω
dω

dte−(β−t)Ĥω
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d〈L̂z〉
dω

˛̨̨̨
˛
ω→0

=

* βZ
0

dtL̂z e−tĤ0 L̂z e−(β−t)Ĥ0

+
= Iqm
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Superfluid fraction (in linear response ω → 0)

γsf =
ρs

ρ
= 1− 1

Iclass

* βZ
0

dtL̂z e−tĤ0 L̂z e−(β−t)Ĥ0

+
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Computation of superfluid fraction γsf

d 〈Lz〉
dω

= τ Tr

"
L̂2

ze−Mτ Ĥ0 +
MX

k=2

L̂ze−(k−1)τ Ĥ0 L̂ze−(M−(k−1))τ Ĥ0

#
Consider any term in the second sum. Angular momentum operates only on the
kinetic energy part of the action and commutes with the internal potential energy.
In the coordinate representation we obtainZ

dRdR1 . . . dRM−1(−i~)
NX

i=1

„
xi
∂

∂yi
− yi

∂

∂xi

«
〈R|e−τ Ĥ0 |R1〉 . . . =

Z
dRdR1 . . . dRM−1(−i~)

NX
i=1

„
−2π

λ2
τ

«
[r1i × ri ]z 〈R|e−τ Ĥ0 |R1〉 . . .

Area of the path segment

A1z =
NX

i=1

[r1i × ri ]z , Akz =
NX

i=1

[r(k+1)i × rki ]z

Hence, the second sum can be written as 〈..〉 = Tr[..ρ̂] =
R

dR . . . 〈R|e−τ Ĥ0 |R1〉 . . .

(−i~)2

„
−2π

λ2
τ

«2

·

 
〈A1z

MX
k=1

Akz〉 −
„
−2π

λ2
τ

«2 D
A2

1z

E!
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Computation of superfluid fraction γsf

Similar for the first term (operator L̂z operates twice on one link) we obtain

L̂2
z〈R|e−τ Ĥ0 |R1〉 = (−i~)2

„
−2π

λ2
τ

«2

A2
1z〈R|e−τ Ĥ0 |R1〉+(−i~)2

„
−2π

λ2
τ

« NX
i=1

(xi x1i +y1i yi )

Now we Combine the first and the second term

Iqm = Ic − Iq

where Ic is the classical part of the responce

Ic = 〈m
NX

i=1

(xi x1i + y1i yi )〉

and the quantum part

Iq =
m2

~2τ
〈A1zAz〉, Az =

MX
k=1

Akz

In the end do symmetrization: 〈A1zAz〉 = 1
M

MP
k=1

〈AkzAz〉 = 1
M
〈

MP
k=1

AkzAz〉 = 〈A2
z〉.
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Superfluid fraction: finite systems

Final result. Superfluid fraction in a
finite system: particles are placed in
a external field (e.g. a rotating
cylinder around ω)

γsf =
4m2〈A2

z〉
~2βIclass

, Az =
A · ω
ω

[P.Sindzingre, M.Klein, D.Ceperley, Phys.Rev. Lett.

63, 1601 (1981)]

Area enclosed by the paths

A =
1

2

NX
i=1

M−1X
k=0

rki × r(k+1)i

Superfluid fraction for N = 5 charged
bosons in a two-dimensional trap.
λ = (e2/εl0)/(~ω) is the coupling
constant.

+

+

– –

+
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Superfluid fraction: macroscopic systems

d
R

Superfluid fraction:

γsf =
4m2〈A2

z〉
~2βIclass

→ m 〈W 2
z 〉

~2β N
−10

−10
−5

−5

0

0

5

5

10

10

Simulation box with periodic

boundary conditions

Instead of a filled cylinder (with N particles)
we consider two cylinders with the radius R
and spacing d , with d � R. Such a torus is
topologically equivalent to the usual periodic
boundary conditions:

Iclass = mNR2, Az = Nround · πR2 = Wz R/2

Wz = 2πR · Nround

Winding number W : total length of the paths
along the torus

W =
NX

i=1

[ri (β)− ri (0)]
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Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

We start from identity permutations

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).
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Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

Two particle exchanges are very probable: r̄ ∼ λD(T )

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).
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Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

Three particle exchanges can happen but very
infrequent: 2r̄ > λD(T ). Probability of longer
permutations is exponentially suppressed !
We are trapped in 2-3-particle permutation sector ⇒
Zero winding numbers and zero superfluidity!

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).



Calculation of superfluid fraction: finite and macroscopic systems Winding number: ergodicity. Worm algorithm. Grand Canonical ensemble Fermion sign problem Comparison of Fermi/Bose statistics: superfluidity Numerical issues of PIMC Summary

Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

Idea: expand the configuration space to the
offdiagonal sector G and sample offdiagonal density
matrix ρ(R, P̂R ′;β) ⇒ Worm algorithm

[Prokof’ev, Svistunov and Tupitsyn (1997);

N.Prokof’ev, B.Svistunov, Boninsegni, Phys.Rev.Lett 96, 070601 (2006)]

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).
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Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

Continue to work in the offdiagonal sector G to
sample two-particle exchanges

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).
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Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

Enjoy stable high acceptance rate for any
permutation length !

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).
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Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

Occasionally close the trajectory to return back in
the diagonal sector Z. Measure thermodynamic
observables related to the diagonal density matrix
ρ(R, P̂R;β) or partition function Z .

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).
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Winding number: ergodicity

Changing a winding number requires a global update in the
permutation space.

       

Conclusion:

Accurate statistics on W requires permutation lengths ∼ N 1/d .

With typical few-particle update sampling (diagonal sector) we stay in
one permutation sector ⇒ non-ergodic sampling of W .

More advance algorithms are required: Ising model – cluster algorithm;
PIMC – worm algorithm (expanded conf. space Z and G).
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Worm algorithm

Key features:

All updates in open-path-configurations are performed exclusively through
the end-points of the disconnected paths ⇒ Local sampling with high
acceptance rates!

No global updates with exponentially low acceptance !

Topological classes are sampled efficiently.

No critical slowing down in most cases.

Open paths are related to important physics, i.e correlation functions, and
are not merely an algorithm trick.

Usual PIMC in Canonical ensemble can now be easily generalized to
Grand Canonical ensemble ⇒ New tool for corresponding experimental
systems.
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Why Grand Canonical ensemble is better

ZGCE =
∞X

N=0

e

βR
0
µN(τ) dτ

ZCE (N,V , β)

Advantages of the simulations in
grand canonical ensemble (GCE):

Off-diagonal one-particle d. matrix:

n(r , r ′, t′−t) =
D

Ψ(r ′, t′) Ψ†(r , t)
E

Condensate fraction:

n(r, r′) =N0φ
∗
0 (r)φ0(r′)+

+
X
i 6=0

niφ
∗
i (r)φi (r

′)

n(r, r′)|r−r′|→∞ → N0

Canonical (CE)
Grand Canonical
(GCE)

Ψ(r ′, t′)

Ψ†(r , t)
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Why Grand Canonical ensemble is better

ZGCE =
∞X

N=0

e

βR
0
µN(τ) dτ

ZCE (N,V , β)

Advantages of the simulations in
grand canonical ensemble (GCE):

Off-diagonal one-particle d. matrix:

n(r , r ′, t′−t) =
D

Ψ(r ′, t′) Ψ†(r , t)
E

Condensate fraction:

n(r, r′) =N0φ
∗
0 (r)φ0(r′)+

+
X
i 6=0

niφ
∗
i (r)φi (r

′)

n(r, r′)|r−r′|→∞ → N0

Prokof’ev, Svistunov, Boninsegni, PRE 74, 036701

(2007)
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Why Grand Canonical ensemble is better

ZGCE =
∞X

N=0

e

βR
0
µN(τ) dτ

ZCE (N,V , β)

Advantages of the simulations in
grand canonical ensemble (GCE):

µ is an input parameter and
〈N〉µ is a simple diagonal property.

Compressibility,
kVT = 〈(N − 〈N〉)2〉µ .

 10

 10  100

A
ve

ra
ge

 p
ar

tic
le

 n
um

be
r 

N

Chemical potential µ in K

Average particle number for chemical potential (T=0.5 K)

λ
0.8
0.85
0.9
0.95
1.0
1.1
1.2
1.3
1.4

µ-dependence of the partice number
N in 2D He4 clusters in a parabolic
trap ω ∼ 1/λ2.

µ

Nµ
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Why Grand Canonical ensemble is better

ZGCE =
∞X

N=0

e

βR
0
µN(τ) dτ

ZCE (N,V , β)

Advantages of the simulations in
grand canonical ensemble (GCE):

Solve ergodicity issue for disorder
problems

Allows for efficient sampling of
exponentially rare event

R2R1e−2
R

p(x)dx
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Sign problem

Let us consider a standard Monte Carlo problem:

Integration over space of states ν. Each configuration has a weight factor:
Wν > 0, e−Eν/T

Expectation values:

〈A〉 =

P
ν Aν WνP

Wν

Frequently for quantum mechanical systems Wν is not-positive definite
function. Then

〈A〉 =

P
ν Aν sign(Wν) · |Wν |P
ν sign(Wν) · |Wν |

Now we can proceed with the standart MC using |Wν | as a sampling
probability

〈A〉 =

P
ν′ Aν′ sign(Wν′)P
ν′ sign(Wν′)

=
〈A · sign〉
〈sign〉
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Sign problem

The trouble comes in cases: 〈sign〉 → 0.
Both 〈A · sign〉 and 〈sign〉 have finite errorbars which fluctuate

〈A〉+ δA =
〈A · sign〉+ δAS

〈sign〉+ δS
≈ 〈A · sign〉
〈sign〉

„
1 +

δAS

〈A · sign〉 +
δS
〈sign〉

«
or

δA

〈A〉 ≈
δAS

〈A · sign〉 → 0
+

δS
〈sign〉 → 0

There is no generic solution of the sign-problem.

This prevents MC methods from studies:

interacting fermions
magnetic systems
real time dynamics, etc.

But the sign-problem can be reduced or eliminated by a proper choice of the
basis set. Example:

ĤΨν = EνΨν , Ψ-eigenfunctions

Z =
X
ν

e−βEν - all terms are positive
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Fermion sign problem in PIMC

Metropolis algorithm gives the same distribution of permutations for both
Fermi and Bose systems. The reason is that for sampling permutations we
use the modulus of the off-diagonal density matrix

ρS/A(R,R;β) =
1

N!

X
P

(±1)Pρ(R, P̂R;β) =

=
1

N!

X
P

(±1)P

Z
dR1 . . .dRM−1 ρ(R,R1;β) . . . ρ(RM−1, P̂R;β)

Bosons: all permutations contribute with the same (positive) sign

Fermions: positive and negative terms (corresponding to even and odd
permutations) are close in their absolute value and cancel each other.

Accurate calculation of this small difference is drastically hampered with the
increase of quantum degeneracy (low T, high density).



Calculation of superfluid fraction: finite and macroscopic systems Winding number: ergodicity. Worm algorithm. Grand Canonical ensemble Fermion sign problem Comparison of Fermi/Bose statistics: superfluidity Numerical issues of PIMC Summary

Fermion problem: partial solutions for Quantum MC

1 Fixed-node (fixed-phase) approximation

Use restricted (reduced) area of PIMC integration which
contains only even permutations. Most of the area with the
cancellation of even and odd permutations are excluded
using an approximate trial ansatz for the N-particle fermion
density matrix. Requires knowledge of nodes of DM.

References: D.M.Ceperley, Fermion Nodes, J. Stat. Phys. 63, 1237

(1991); D.M.Ceperley, Path Integral Calculations of Normal Liquid

3He, Phys. Rev. Lett. 69, 331 (1992).
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Fermion problem: partial solutions for Quantum MC

2 Direct PIMC

Do not sample individual permutations in the sum. Instead
use the full expression presented in a form of an
determinant. In this case the absolute value of the
determinant is used in the sampling probabilities. Its value
becomes close to zero in the regions of equal contributions
of even and odd permutations and Monte Carlo sampling
successfully avoids such regions.

References: V.S.Filinov, M.Bonitz, W.Ebeling, and V.E.Fortov,

Thermodynamics of hot dense H-plasmas: Path integral Monte Carlo

simulations and analytical approximations, Plasma Physics and

Controlled Fusion 43, 743 (2001).
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Fermion problem: partial solutions for Quantum MC

3 Multilevel-blocking PIMC

Trace the cancellations of permutations by grouping the
path coordinates into blocks (levels). Use numerical
integration to get good estimation of the fermion density
matrix at high temperature. Further use it in the sampling
probabilities of path coordinates on the next level
(corresponding to the density matrix at lower temperature).
Most of the sign fluctuations are already excluded at higher
levels and sampling at low levels (lower temperatures)
becomes more efficient.

References: R.Egger, W.Hausler, C.H.Mak, and H.Grabert, Crossover

from Fermi Liquid to Wigner Molecule Behavior in Quantum Dots,

Phys. Rev. Lett. 82, 3320 (1999).
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Comparison of Fermi/Bose statistics for excitons

Exact treatment of excitons as composite particles consisting of two fermions:
Ne !Nh! permutations, total density matrix is antisymmetric.
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Comparison of Fermi/Bose statistics for excitons

Exact treatment of excitons as composite particles consisting of two fermions:
Ne !Nh! permutations, total density matrix is antisymmetric.

Exact fermionic calculations clearly show the effect of Fermi repulsion on the
radial distributions.

This favors localization of individual particles and reduces the density in
between the central particle and the shell.

Although the effect is small it has a large effect on the superfluid fraction.
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Comparison of Fermi/Bose statistics: superfluidity

Applicability of bosonic model:
Critical density: ρ∗ ≈ 5·109cm−2

ρ ≤ ρ∗: both models agree.

ρ > ρ∗: fermionic calculations
indicate drop in the superfluid
fraction.

Simulation: Spin polarized electron-hole bilayer (two coupled ZnSe quantum wells).
External confinement: parabolic trap.
Parameters: T = 312mK, d = 20.1nm.
A.Filinov, M.Bonitz, P.Ludwig, and Yu.E.Lozovik, phys. stat. sol. (c) 3, No. 7, 2457 (2006)
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Improved high-temperature action

We need to improve the simple factorization formula for unbound potentials,
e.g. V (r) = −1/r

ρ(R,R′, τ) ≈
NY

i=1

ρF (ri , r
′
i , τ) · exp

24−τY
j<k

V (rjk)

35
⇒ not be normalized (due to singularity).

Alternative: take into account two-body correlations “exactly”

ρ(R,R′; τ) ≈
NY

i=1

ρF (ri , r′i ; τ)×
Y
j<k

ρ[2](rj , rk , r
′
j , r
′
k ; τ)

ρF (ri , r′i ; τ)ρF (rk , r′k ; τ)
+ O(ρ[3]),

Three-body and higher order terms become negligible by decreasing
τ = β/M.
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Two-body density matrix

Effective pair potential Upair

ρ[2](r1, r2, r
′
1, r
′
2; τ)

ρF (r1, r′1; τ)ρF (r2, r′2; τ)
= e−τU

pair
12

Upair (r1 − r2, r
′
1 − r′2; τ) is temperature-dependent and finite at r12 = 0.

Two-body density matrix ρ[2] can be obtained by solving two-particle
problem.

Replace singular potentials with bounded effective potentials defined as

ρ(r12, r
′
12; τ) = ρF (r12, r

′
12;β) exp

h
−τUpair (r12, r

′
12; τ)

i
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Advantages of effective potentials

Exact treatment of pair correlations allows:

– drastically reduce number of factorization factors ⇒
– reduce dimension of integrals ⇒
– simplification of path integral sampling.

Approaches to computation of the pair density matrix:

1 Cumulant approximation (Feynman-Kacs)
[R.Feynman and A.R.Hibbs Quantum Mechanics and Path Integral]

2 Solution of two-particle Bloch equation (matrix squaring technique)
[Klemm and Storer (1974), D.Ceperley]

3 Perturbation or semi-classical approximation
[Kelbg, Ebeling, Deutsch, Feynman, Kleinert (1963-1995)]



Calculation of superfluid fraction: finite and macroscopic systems Winding number: ergodicity. Worm algorithm. Grand Canonical ensemble Fermion sign problem Comparison of Fermi/Bose statistics: superfluidity Numerical issues of PIMC Summary

Two-body density matrix: eigenstates and Feynman-Kacs

Sum over eigenstates of the Hamiltonian

ρ(r, r′, τ) =
X

i

e−τEi Ψ∗i (r) Ψi (r
′)

Can be used if all eigenstates are known analytically, e.g. for Coulomb
potential (Pollock Comm. Phys. 52, 49 (1988)).

Feynman-Kac formula: ρ(r, r′; τ) =

=

Z r(τ)=r′

r(0)=r

Dr(t) exp

24− τZ
0

“
mṙ2(t)/2 + V12(r(t)) dt

”35 =

*
e
−
τR
0

V12(r(t))dt
+
ρF

The average can be calculated by Monte Carlo sampling of all Gaussian
random walks from r to r′.
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Two-body density matrix: matrix squaring

Matrix squaring technique: Factorization into a center-of-mass, relative
coordinates, ρ(ri , rj , r

′
i , r
′
j ; τ) = ρcm(R,R′; τ)ρ(r, r′; τ), and expansion in

partial waves:

ρ2D(r, r′; τ) =
1

2π
√

r r ′

+∞X
l=−∞

ρl(r , r ′; τ)e i lΘ,

ρ3D(r, r′; τ) =
1

4πr r ′

+∞X
l=0

(2l + 1) ρl(r , r ′; τ) Pl(cos Θ)

Convolution equation: k-iterations raise the temperature by 2k : τ/2k → τ

∞Z
0

dr ′′ ρl(r , r ′′;
τ

2m+1
) ρl(r ′′, r ′;

τ

2m+1
) = ρl(r , r ′;

τ

2m
), m = k − 1, . . . , 0

Semi-classical approximation: the start for the matrix-squaring iterations

ρl(r , r ′; τ/2k) = exp

 
− τ/2k

|r − r ′|

Z r′

r

V (x)dx

!
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Two-body density matrix: perturbative solution

First order perturbation solution for the two-particle Bloch equation:

∂

∂τ
ρ(ri , rj , r

′
i , r
′
j ; τ) = −Ĥ ρ(ri , rj , r

′
i , r
′
j ; τ)

ρij =
(mi mj)

3/2

(2π~τ)3
exp

h
− mi

2~2τ
(ri − r′j)

2
i

exp
h
− mj

2~2τ
(ri − r′j)

2
i

exp[−τΦij ],

Solution for Coulomb interaction:

Φij(rij , r
′
ij ; τ) ≡ ei ej

Z 1

0

dα

dij(α)
erf

 
dij(α)/λij

2
p
α(1− α)

!
,

where dij(α) = |αrij + (1− α)r′ij |, erf(x) is the error function,

erf(x) = 2√
π

R x

0
dte−t2

, and λ2
ij = ~2τ

2µij
with µ−1

ij = m−1
i + m−1

j .

The diagonal element (r′ij = rij) is called the Kelbg potential (DKP)

Φ (rij , τ) =
qi qj

rij

241− e
−

r2
ij

λ2
ij +
√
π

rij
λijγij

„
1− erf

»
γij

rij
λij

–«35 .
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Effective pair potential

Solid lines: electron–electron (e–e) and electron–proton (e–p) potential Upair at

T = 106 K. Dotted lines: Coulomb interaction; dashed lines: Deutsch potential; open

circles: UF variational perturbative potential (Feynman and Kleinert). Distances are in

aB = ~2/mee2 and potentials are in Ha = e2/aB units.
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Effective pair potential: temperature dependence
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m

 Φ0
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U(β)a)

 U
pair

 Φ
Kelbg

 W ω, x
m

 Φ0

Kelbg

 

 

r/a
B
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40 000 K 5 000 K

U(β)+β∆U(β)/∆βb)

(a): Effective electron-proton potential (in units of Ha): the DKP Φ0(r;β), the improved

DKP Φ(r;β), variational potential W Ω,xm
1 , pair potential Up corresponding to the “exact”

density matrix. Temperatures 5 000, 40 000, 125 000 and 320 000 K.

(b): Contribution to the potential energy: f (β) = U(β) + β
∂U(β)
∂β

, Ep = Tr[f (β)ρ̂]/Z .

[Filinov,Golubnychiy,Bonitz,Ebeling,Dufty, PRE 70, 046411 (2004)]
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Estimators for thermodynamic averages

Quantities of interest: energy, pressure (equation of state), specific heat, structure
factor, pair distribution functions, condensate or superfluid fraction, etc.

All quantities can be obtained by averaging with the thermal density matrix or as
derivatives of the partition function Z.

1 We usually calculate only ratios of integrals. Free energy and entropy require
special techniques.

2 The variance of some estimators can be large: 〈A〉 = 1
M

MP
i=1

A(Ri )± σA/
√

M.

Use virial estimators. Introduce temperature-dependent measure

3 Take care for other sources of errors: systematic (Trotter formula), statistical
(autocorrelation times) and finite-size (scaling with system size).



Calculation of superfluid fraction: finite and macroscopic systems Winding number: ergodicity. Worm algorithm. Grand Canonical ensemble Fermion sign problem Comparison of Fermi/Bose statistics: superfluidity Numerical issues of PIMC Summary

Estimators for thermodynamic averages

Quantities of interest: energy, pressure (equation of state), specific heat, structure
factor, pair distribution functions, condensate or superfluid fraction, etc.

All quantities can be obtained by averaging with the thermal density matrix or as
derivatives of the partition function Z.

1 We usually calculate only ratios of integrals. Free energy and entropy require
special techniques.

Examples: Total energy

E = − 1

Z

∂Z

∂β
= − 1

Z

Z
dR

∂ρ(R,R;β)

∂β
,

ρ(R,R;β) =

Z
dR1 . . . dRM−1 (e−Skin−SV )/λdMN

τ

E =
dMN

2β
−

*
1

β

M−1X
i=0

π

λ2
τ

(Ri − Ri+1)2

+
+

*
1

M

M−1X
i=0

d

dτ
(τU(Ri , τ))

+
.

Kinetic energy and pressure

Ekin =
m

βZ

∂Z

∂m
, P = − ∂F

∂V
=

1

3V

*
2Ekin −

X
i<j

rij
d(τU(Ri , τ))

drij

+

2 The variance of some estimators can be large: 〈A〉 = 1
M

MP
i=1

A(Ri )± σA/
√

M.

Use virial estimators. Introduce temperature-dependent measure

3 Take care for other sources of errors: systematic (Trotter formula), statistical
(autocorrelation times) and finite-size (scaling with system size).



Calculation of superfluid fraction: finite and macroscopic systems Winding number: ergodicity. Worm algorithm. Grand Canonical ensemble Fermion sign problem Comparison of Fermi/Bose statistics: superfluidity Numerical issues of PIMC Summary

Estimators for thermodynamic averages

Quantities of interest: energy, pressure (equation of state), specific heat, structure
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Estimators for thermodynamic averages

Quantities of interest: energy, pressure (equation of state), specific heat, structure
factor, pair distribution functions, condensate or superfluid fraction, etc.

All quantities can be obtained by averaging with the thermal density matrix or as
derivatives of the partition function Z.

1 We usually calculate only ratios of integrals. Free energy and entropy require
special techniques.

2 The variance of some estimators can be large: 〈A〉 = 1
M

MP
i=1

A(Ri )± σA/
√

M.

Use virial estimators. Introduce temperature-dependent measure

Ri (τ) = R0 + λτ

iX
m=1

ξm, i = 1, . . . ,M − 1.⇒

Skin =
M−1X
i=0

π

λ2
τ

(Ri − Ri+1)2 =
M−1X
i=0

πξ2
i+1 6= f (β),

ρ(R,R;β) =

Z
dR1..dRM−1

λdMN
τ

(..) =

Z
dξ1..dξM−1

λdMN
τ

λd(M−1)N
τ (..) ∼ 1

λdN
τ

E =
dN

2β
+

*X
i

U(Ri (τ)) + β
∂U(Ri (τ)

∂Ri (τ)

∂Ri (τ)

∂β

+
.

3 Take care for other sources of errors: systematic (Trotter formula), statistical
(autocorrelation times) and finite-size (scaling with system size).
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Estimators for thermodynamic averages

Quantities of interest: energy, pressure (equation of state), specific heat, structure
factor, pair distribution functions, condensate or superfluid fraction, etc.

All quantities can be obtained by averaging with the thermal density matrix or as
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1 We usually calculate only ratios of integrals. Free energy and entropy require
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Summary

PIMC allows for first-principle simulations of interacting
quantum particles.

Many-body correlations can be treated at any accuracy.

Problems remain to be solved:
– Fermion sign problem
– Limitations to several hundred particles due to large
computational demands
– Efficient simulations of spin and magnetic effects
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