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Methods for many-body problems

Many-body Schrödinger equation for Coulomb interaction

ĤΨ(R) = EΨ(R), Ĥ = − ~2

2m

X
i

∇2
i +

X
i

Vext(ri ) +
X
i<j

qi qj

|ri − rj |

We are interested in

Energy spectrum: ground state, low-excited states.

Expectation values of operators 〈Ψn|Â|Ψn〉 / 〈Ψn|Ψn〉

Theoretical approaches (scaling with system size):

1 Direct diagonalization (CI) ∼ N6: – most exact method but only small
systems

2 Mean field (DFT, HF) ∼ N3: – large system sizes, approximation on
exchange/correlation

3 Quantum MC (VMC, DMC, GFMC, PIMC) ∼ N4: – calculations with full
inclusion of many-body correlation effects, most accurate benchmark for
medium-large systems



Introduction Variational Monte Carlo Path-integral Monte-Carlo Conclusion

Methods for many-body problems

Many-body Schrödinger equation for Coulomb interaction
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Variational Monte Carlo (VMC)

Variational Monte Carlo solves the Schrödinger equation stochastically.

Make an ansatz for the wave-function Ψ with some free parameters.

Attempt to find the optimal parameter set which minimizes the energy.

Consider expectation values of the Hamiltonian on Ψ

Ev =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

Z
dR

 
ĤΨ(R)

Ψ(R)

!
|Ψ(R)|2R

dR ′ |Ψ(R ′)|2

=

Z
dR EL(R) ρ(R) = 〈EL(R)〉ρ ,

where R = (r1, . . . , rN), EL(R) is local energy and ρ(R) = A |Ψ(R)|2 is the
distribution function.
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Main steps of VMC

Goal is to find the best estimation Ψ of a true ground state wave function Ψ0 by
using the zero-variance principle, i.e.

Ev = 〈EL(R)〉ρ =
1

M

MX
i=1

EL(Ri )± σE/
√

M

σ2
E = 〈(EL(R)− Ev )2〉ρ

E→E0−−−−→ 0.

This is equivalent to the search for the global energy minimum
E [Ψ0] = minΨ {〈E [Ψ]〉}.

Algorithm

1 Fix variational parameter set {λ }
2 Sample R using ρ(R) with a random walk in the space of degrees of freedom

3 Compute average local energy 〈EL(R)〉ρ.

4 Accept parameter as new best estimate if energy is lower than previous best.

5 Change parameter set and go back to step (1).
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Variational Monte Carlo (continued)

Jastrow-Slater wave function:

Ψ(r1, . . . , rN) = J(r1, . . . , rN)
X

k

dkD↑k (r1, . . . , rN↑) D↓k (rN↑+1, . . . , rN)

Jastrow factor (Boys and Handy’s form)

J(r1, . . . , rN) =
Y
αi

eA(riα)

| {z }
Y
i<j

eB(rij )

| {z }
Y
α,i<j

eC(riα,rjα,rij )

| {z }
A,B,C are polynomials of scaled variables r̄ = b r/(1 + αr) of the n-order and

recover most of the correlation energy Ecorr = Eexact − EHF .
Practical notes:

Jastrow factors are optimized by variance/energy minimization

Orbitals and set of dk coefficients in determinantal part are obtained:
– Hartree-Fock or DFT (LDA, GGA)
– CI or multi-configuration self-consistent field calculations
– Optimized by energy minimization

References: Foulkes et al., Rev.Mod.Phys. 73, 33 (2001);
Filippi, Umrigar, J.Chem.Phys. 105, 213 (1996) and references therein.
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Advantages of VMC

Freedom in choice of trial wave function Ψ

MC integration allows: a) large system sizes, b) complex forms of Ψ

Ψ has more compact presentation than ΨCI in quantum chemistry

Jastrow and determinants determine two types of correlations:

Dynamical correlations: due to inter-electron repulsion (taken by
Jastrow factor)
Static correlations: due to near-degeneracy of occupied and
unoccupied orbitals (taken by linear combination of determinants)

Determinantal part yields the nodes (zeros) of wave function

Determines the fixed-node quality of Diffusion MC, PIMC, etc.
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Why go beyond VMC

Dependence of the results on a trial wave function.

No systematic procedure to construct analytical form of Ψ. One choses Ψ
based on physical intuition.

Easier to construct good Ψ for closed than for open shells.

The VMC wave function optimized for the energy is not necessary well suited
for other quantities.
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Quantum mechanical averages for distinguishable particles

Quantum mechanical average using N-particle wave functions (pure
ensemble)

〈A〉 (N, β) =
1

Z

Z
dR 〈R|Â|R ′〉 ψ∗(R)ψ(R)

Direct generalization to coherent superposition of N-particle wave functions.

Finite temperatures (T > 0, mixed ensemble): use N-particle density matrix
ρ(R,R ′, β), which in coordinate representation is a superposition of
wavefunctions weighted with probability density, i. e.

ρ(R,R ′;β) =
X
α

ψα(R)ψ∗α(R ′) e−βEα = 〈R|e−βĤ |R ′〉 ≡ 〈R|ρ̂|R ′〉

with N-particle energy eigenvalues Eα and the density operator ρ̂. A
thermodynamic average can then be computed as

〈A〉 (N, β) =
1

Z

Z
dR 〈R|Â|R ′〉 ρ(R,R ′, β),
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Partition function

The partition function is the sum over all accessible states weighted with their
thermal probability, i.e

Z(N, β) =

Z
dR ρ(R,R ′, β) = Tr

h
e−βĤ

i
It is a key thermodynamic quantity as all thermal averages depend on it.

In energy basis with the eigenvalues Ei and corresponding eigenstates |i〉, the
partition function simply reads

Z = Tr[e−βĤ ] =
X

i

〈i |e−βĤ |i〉 =
X

i

e
− Ei

kBT

With any full and orthonormal basis set { | j〉 } the partition function Z can
be written as a sum over matrix elements of the density operator

Z = Tr[e−βĤ ] =
X

i

〈j |e−βĤ |j〉
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Results for kinetic and harmonic operators

Potential energy density matrix in coordinate representation

r̂i |r〉 = ri |r〉

〈R|e−βV̂ |R ′〉 =
D

R
˛̨̨

e−β
P

Vext (̂ri )+Vij (̂ri ,̂rj )
˛̨̨

R ′
E

= e−β
P

Vext(ri )+Vij (ri ,rj )δ(R − R ′)

Kinetic energy density matrix in coordinate representation

p̂i |r〉 =

Z
dp′ p̂i |p

′〉 〈p′|r〉

〈r | p〉 = 〈p|r〉∗ =
1

(2π~)3/2
e−ir·p/~

D
R
˛̨̨

e−βK̂
˛̨̨

R ′
E

=

Z
dP ′dP ′′

˙
R
˛̨

P ′
¸fi

P ′
˛̨̨̨

e
−β

P p̂i
2mi

˛̨̨̨
P ′′
fl˙

P ′′
˛̨

R ′
¸

= λ−3N
D e

− π

λ2
D

(Ri−R′
i )2

Definitions: λD = 2π~(2πmkBT )−1/2, |R〉 = { | r1〉 | r2〉 · · · | rN〉 }.
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Density matrix decomposition

The many-particle Hamiltonian Ĥ can be written as sum of kinetic energy
operator K̂ and potential energy operator V̂ ,

Ĥ = K̂ + V̂ , [K̂ , V̂ ] 6= 0.

The total density operator ρ̂ does not factorize simply:

ρ̂ = e−βĤ = e−β(K̂+V̂ ) = e−βK̂ e−βV̂ e−(β2[K̂ ,V̂ ]+O(β3))

ρ̂ is not known in general.

However, at high temperature (quasi-classical limit) β → 0, thus:

ρ̂ = e−βĤ = e−β(K̂+V̂ ) → e−βK̂ e−βV̂

The explicit form of the r.h.s is known. The expressions were listed in
coordinate representation on the previous slide.
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Density matrix decomposition II

Feynman’s idea: Use convolution property of density operator

ρ̂(β) = e−βĤ =
h
e−

β
M

Ĥ
iM

= [ρ̂(τ)]M

to write the low temperature density operator as a product of high
temperature density operators.

Using simplest (first order) approximation at inverse temperature τ = β/M
yields:

e−τ(K̂+V̂ ) = e−τ K̂ e−τ V̂ eO(1/M)

We can approximate the density operator with an arbitrarily low error by
increasing M.

Additionally, there are higher order approximations which reduce the number
of factors M needed to achieve the same error.
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Path-integrals

Rewritting the convolution property for the density matrix in coordinate
representation yields

ρ(R,R ′;β) =
D

R
˛̨̨

e−βĤ
˛̨̨

R ′
E

=

Z
dR1

D
R
˛̨̨

e−
β
2

Ĥ
˛̨̨

R1

ED
R1

˛̨̨
e−

β
2

Ĥ
˛̨̨

R ′
E

=

Z
dR1ρ(R,R1;β/2)ρ(R1,R

′;β/2),

Thus, at M-times higher temperature there are 3NM additional integrations.

Discrete time path-integral representation of the density matrix

ρ(R,R ′;β) =

Z
dR1dR2 . . .dRM−1 ρ(R,R1; τ)ρ(R1,R2; τ) · · · ρ(RM−1,R

′; τ)

Common abbrevation:

ρ(R,R ′;β) =

Z
dR1dR2 . . .dRM−1 e−

PM
k=1 Sk

, ρ = e ln ρ ≡ e−S

Sk = − ln[ρ(Rk−1,Rk ; τ)] ≈ ln
“
λd·N
τ

”
+

π

λ2
τ

(Rk − Rk−1)2 + τV (Rk),

Sk is called action, the r.h.s its primitive approximation.
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Path-integral representation
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Figure: Two particles represented by set of points. The chain is closed and
called a “path” (therefore: “path integral”)

Density matrix corresponds to a system of interacting polymers with classical
action S :

“Spring” terms hold polymers (paths) together with typical length

λ2
τ = 2π~2τ

m

Polymer interaction is given by Vext(ri ) + Vint(rij)
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Path-integral representation II

Figure: PIMC results of five particles in a 2D harmonic trap. Left: Snapshot
where labels show particles indices. Particles 1 and 2 are the pair exchange.
Right: y -component of the paths vs imaginary time Mτ .

The term imaginary time is used due to the analogy:

Time propagation operator e−i Ĥτ/~

Density operator e−βĤ
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Density distribution of 2 trapped particles

Figure: Averaging over many paths configurations yields smooth probability
densities in interacting quantum systems.
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Basic numerical issues of PIMC

1 Sampling of trajectories:
it is necessary to explore the whole coordinate space for each intermediate
point. This is very time consuming. To speed up convergence: move several
slices (points of path) at once.

2 Construction of more accurate actions:
use effective interaction potentials which take into account two, three and
higher order correlation effects. More accurate actions help to reduce the
number of time slices by a factor of 10 or more.

3 Estimation of thermodynamic averages:
Expectation values of physical observables, e.g. energy, momentum
distribution, etc. can be evaluated in different ways called estimators.
Convergence can be improved by using an estimator with smaller statistical
variance.

4 Inclusion of quantum statistics:
particle statistics (Fermi/Bose) is accounted by proper symmetrization of the
density matrix and sampling in the permutation space (direct sampling from
N! exchanges only those with non-negligible statistical weights).
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Appendix

Mean-field solutions

Starting point – non-interacting Hartree-Fock wave functions.
We introduce (Ψ1, . . . ,ΨN) – occupied orbitals and (ΨN+1, . . .) – virtual orbitals.

DHF (r1, . . . , rN) =

˛̨̨̨
˛̨̨ Ψ1(r1) Ψ1(r2) . . . Ψ1(rN)

...
...

. . .
...

ΨN(r1) ΨN(r2) . . . ΨN(rN)

˛̨̨̨
˛̨̨

Spin orbitals: Ψi (r) = Φi (r)χSi (σ)
Spatial part, Φi (r), satisfy HF-equations:"

−1

2
∇2 + Vext(r) +

NX
j=1

Z
dr′
|Φj(r

′)|2

|r − r′|

#
Φi (r) +

h
V̂HF Φi

i
(r) = εi Φi (r)

Now we consider excitations to virtual orbitals: single, double, three, . . . -body
excitations

Ψ = c0 DHF + c1 D1 + c2 D2 + . . .

Goal: Construct more compact form of Ψ.
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Partition function: interacting part back

Classical partition function:

Z = ZNVT · Q ideal
NVT ≈ Tr

h
e−βĤ

i
Configuration integral is the main object of Classical Statistical Mechanics

ZNVT =

Z
drNe−βV (rN ), R = rN = (r1, r2, . . . , rN)

Goal: Evaluate measurable quantities, such as total energy E , potential
energy V , pressure P, pair distribution function g(r), etc.

〈A〉NVT = 1/Z

Z
dR A(R) e−βV (R), β = 1/kBT

Averaging with the canonical probability distribution (Boltzmann factor) can
be performed by the Metropolis algorithm.

The ideal gas part Q ideal
NVT should be treated quantum mechanically but with

the known analytical result.
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Partition function: ideal gas part

Consider N particles in a box of volume V = L3

εk =
~2k2

2m
, k =

π

L
(nxx + nyy + nzz),

∆nx =
L

π
dkx =

L

π~
dpx ,

X
nx ,ny ,nz

→ L3

(π~)3

∞Z
0

dp

Q ideal
NVT =

1

N!

„
V

(2π~)3

Z
dp e−βp2/2m

«N

=
V N

N!λdN
D

, λ2
D =

2π~2β

m
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Operator decomposition: higher order schemes back

Commutation relations. Baker-Campbell-Hausdorf formula:
For any pair X̂ , Ŷ of non-commuting operators [X̂ , Ŷ ] = XY − YX 6= 0

eτ X̂ eτ Ŷ = eZ (1)

Z = τ(X +Y )+
τ 2

2
[X ,Y ]+

τ 3

12
([X ,X ,Y ] + [Y ,Y ,X ])+

τ 4

24
[X ,Y ,Y ,X ]+O(τ 5)

Consider now X = K̂ , Y = V̂ and τ = β/M � 1 (M � 1).
General approach to factorize the exponent

eτ(K+V ) =
nY

j=1

eajτK ebjτV + O(τ n+1)

Set of coeff. ai , bi are determined by required order of accuracy from Eq. (1).

Operator decomposition: n-order schemes

First order: eτ(K+V ) = eτK eτV eO(τ2)

Second order: eτ(K+V ) = e
1
2
τK eτV e

1
2
τK eO(τ3)

Fourth order: eτ(K+V ) = e
1
6
τV e

1
2
τK e

1
6
τ Ṽ e

1
2
τK e

1
6
τV eO(τ5),

Ṽ = V +
1

48
τ 2[V , [K ,V ]] - correction to classical potential
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