Introduction to Path Integral Monte Carlo. Part I.

Alexey Filinov, Jens Böning, Michael Bonitz

Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

November 12, 2008

Outline

Introduction

- Numerical methods for quantum many-body problems
(2)

Variational Monte Carlo

- Variational Monte Carlo (VMC)
(3) Path-integral Monte-Carlo
- Quantum mechanical averages and density matrix
- Path-integrals
(4) Conclusion
- Conclusion

Outline

Introduction

- Numerical methods for quantum many-body problems
- Variational Monte Carlo (VMC)
- Quantum mechanical averages and density matrix
- Path-integrals
- Conclusion

Methods for many-body problems

Many-body Schrödinger equation for Coulomb interaction

$$
\hat{H} \Psi(R)=E \Psi(R), \quad \hat{H}=-\frac{\hbar^{2}}{2 m} \sum_{i} \nabla_{i}^{2}+\sum_{i} V_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\sum_{i<j} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

We are interested in

- Energy spectrum: ground state, low-excited states.
- Expectation values of operators $\left\langle\Psi_{n}\right| \hat{A}\left|\Psi_{n}\right\rangle /\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle$

Methods for many-body problems

Many-body Schrödinger equation for Coulomb interaction

$$
\hat{H} \Psi(R)=E \Psi(R), \quad \hat{H}=-\frac{\hbar^{2}}{2 m} \sum_{i} \nabla_{i}^{2}+\sum_{i} V_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\sum_{i<j} \frac{q_{i} q_{j}}{\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|}
$$

We are interested in

- Energy spectrum: ground state, low-excited states.
- Expectation values of operators $\left\langle\Psi_{n}\right| \hat{A}\left|\Psi_{n}\right\rangle /\left\langle\Psi_{n} \mid \Psi_{n}\right\rangle$

Theoretical approaches (scaling with system size):
(1) Direct diagonalization $(\mathrm{Cl}) \sim N^{6}$: - most exact method but only small systems
(2) Mean field (DFT, HF) $\sim N^{3}$: - large system sizes, approximation on exchange/correlation
(3) Quantum MC (VMC, DMC, GFMC, PIMC) $\sim N^{4}$: - calculations with full inclusion of many-body correlation effects, most accurate benchmark for medium-large systems

Outline

- Numerical methods for quantum many-body problems
(2)

Variational Monte Carlo

- Variational Monte Carlo (VMC)Path-integral Monte-Carlo
- Quantum mechanical averages and density matrix
- Path-integrals
- Conclusion

Variational Monte Carlo (VMC)

Variational Monte Carlo solves the Schrödinger equation stochastically.

- Make an ansatz for the wave-function Ψ with some free parameters.
- Attempt to find the optimal parameter set which minimizes the energy.

Consider expectation values of the Hamiltonian on Ψ

$$
\begin{aligned}
E_{v} & =\frac{\langle\Psi| \hat{H}|\Psi\rangle}{\langle\Psi \mid \Psi\rangle}=\int d R\left(\frac{\hat{H} \Psi(R)}{\Psi(R)}\right) \frac{|\Psi(R)|^{2}}{\int d R^{\prime}\left|\Psi\left(R^{\prime}\right)\right|^{2}} \\
& =\int d R E_{L}(R) \rho(R)=\left\langle E_{L}(R)\right\rangle_{\rho}
\end{aligned}
$$

where $R=\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right), E_{L}(R)$ is local energy and $\rho(R)=A|\Psi(R)|^{2}$ is the distribution function.

Main steps of VMC

Goal is to find the best estimation Ψ of a true ground state wave function Ψ_{0} by using the zero-variance principle, i.e.

$$
\begin{aligned}
E_{v} & =\left\langle E_{L}(R)\right\rangle_{\rho}=\frac{1}{M} \sum_{i=1}^{M} E_{L}\left(R_{i}\right) \pm \sigma_{E} / \sqrt{M} \\
\sigma_{E}^{2} & =\left\langle\left(E_{L}(R)-E_{v}\right)^{2}\right\rangle_{\rho} \xrightarrow{E \rightarrow E_{0}} 0 .
\end{aligned}
$$

This is equivalent to the search for the global energy minimum $E\left[\Psi_{0}\right]=\min _{\psi}\{\langle E[\Psi]\rangle\}$.

Algorithm
(1) Fix variational parameter set $\{\lambda\}$
(2) Sample R using $\rho(R)$ with a random walk in the space of degrees of freedom
(3) Compute average local energy $\left\langle E_{L}(R)\right\rangle_{\rho}$.
(Accept parameter as new best estimate if energy is lower than previous best.
(0) Change parameter set and go back to step (1).

Variational Monte Carlo (continued)

Jastrow-Slater wave function:

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=J\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N \uparrow}\right) D_{k}^{\perp}\left(\mathbf{r}_{N \uparrow+1}, \ldots, \mathbf{r}_{N}\right)
$$

Variational Monte Carlo (continued)

Jastrow-Slater wave function:

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=J\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N \uparrow}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N \uparrow+1}, \ldots, \mathbf{r}_{N}\right)
$$

Jastrow factor (Boys and Handy's form)

$$
J\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\underbrace{\prod_{\alpha_{i}} e^{A\left(r_{i \alpha}\right)}}_{\begin{array}{l}
\text { electron- } \\
\text { nucleus }
\end{array}} \underbrace{\prod_{i<j} e^{B\left(r_{i j}\right)}}_{\text {electron- }} \underbrace{}_{\begin{array}{l}
\text { electron } \\
\begin{array}{l}
\text { electron- } \\
\text { nucleus }
\end{array}
\end{array} \prod_{\begin{array}{l}
\alpha, i<j
\end{array}} e^{C\left(r_{i \alpha}, r_{j \alpha}, r_{i j}\right)}}
$$

Variational Monte Carlo (continued)

Jastrow-Slater wave function:

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=J\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N \uparrow}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N \uparrow+1}, \ldots, \mathbf{r}_{N}\right)
$$

Jastrow factor (Boys and Handy's form)

$$
J\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\underbrace{\prod_{\alpha_{i}} e^{A\left(r_{i \alpha}\right)}} \underbrace{\prod_{i<j} e^{B\left(r_{i j}\right)}} \underbrace{\prod_{\alpha, i<j} e^{C\left(r_{i \alpha}, r_{j \alpha}, r_{i j}\right)}}
$$

A, B, C are polynomials of scaled variables $\bar{r}=b r /(1+\alpha r)$ of the n-order and recover most of the correlation energy $E_{\text {corr }}=E_{\text {exact }}-E_{H F}$.

Variational Monte Carlo (continued)

Jastrow-Slater wave function:

$$
\Psi\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=J\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right) \sum_{k} d_{k} D_{k}^{\uparrow}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N \uparrow}\right) D_{k}^{\downarrow}\left(\mathbf{r}_{N \uparrow+1}, \ldots, \mathbf{r}_{N}\right)
$$

Jastrow factor (Boys and Handy's form)

$$
J\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\underbrace{\prod_{\alpha_{i}} e^{A\left(r_{i \alpha}\right)}}_{\begin{array}{l}
\text { electron- } \\
\text { nucleus }
\end{array}} \underbrace{\prod_{i<j} e^{B\left(r_{i j}\right)}}_{\begin{array}{l}
\text { electron- } \\
\text { electron }
\end{array}} \underbrace{\prod_{\alpha, i<j} e^{C\left(r_{i \alpha}, r_{j \alpha}, r_{i j}\right)}}_{\begin{array}{l}
\text { electron- } \\
\text { electron- } \\
\text { nucleus }
\end{array}}
$$

Practical notes:

- Jastrow factors are optimized by variance/energy minimization
- Orbitals and set of d_{k} coefficients in determinantal part are obtained:
- Hartree-Fock or DFT (LDA, GGA)
- Cl or multi-configuration self-consistent field calculations
- Optimized by energy minimization

References: Foulkes et al., Rev.Mod.Phys. 73, 33 (2001);
Filippi, Umrigar, J.Chem.Phys. 105, 213 (1996) and references therein.

Advantages of VMC

- Freedom in choice of trial wave function Ψ
- MC integration allows: a) large system sizes, b) complex forms of Ψ
- Ψ has more compact presentation than Ψ_{CI} in quantum chemistry
- Jastrow and determinants determine two types of correlations:
- Dynamical correlations: due to inter-electron repulsion (taken by Jastrow factor)
- Static correlations: due to near-degeneracy of occupied and unoccupied orbitals (taken by linear combination of determinants)
- Determinantal part yields the nodes (zeros) of wave function
- Determines the fixed-node quality of Diffusion MC, PIMC, etc.

Why go beyond VMC

- Dependence of the results on a trial wave function.
- No systematic procedure to construct analytical form of Ψ. One choses Ψ based on physical intuition.
- Easier to construct good Ψ for closed than for open shells.
- The VMC wave function optimized for the energy is not necessary well suited for other quantities.

Outline

- Numerical methods for quantum many-body problems
- Variational Monte Carlo (VMC)
(3)

Path-integral Monte-Carlo

- Quantum mechanical averages and density matrix
- Path-integrals
- Conclusion

Quantum mechanical averages for distinguishable particles

- Quantum mechanical average using N-particle wave functions (pure ensemble)

$$
\langle A\rangle(N, \beta)=\frac{1}{Z} \int d R\langle R| \hat{A}\left|R^{\prime}\right\rangle \psi^{*}(R) \psi(R)
$$

Direct generalization to coherent superposition of N-particle wave functions.

- Finite temperatures ($T>0$, mixed ensemble): use N-particle density matrix $\rho\left(R, R^{\prime}, \beta\right)$, which in coordinate representation is a superposition of wavefunctions weighted with probability density, i. e.

$$
\rho\left(R, R^{\prime} ; \beta\right)=\sum_{\alpha} \psi_{\alpha}(R) \psi_{\alpha}^{*}\left(R^{\prime}\right) e^{-\beta E_{\alpha}}=\langle R| e^{-\beta \hat{H}}\left|R^{\prime}\right\rangle \equiv\langle R| \hat{\rho}\left|R^{\prime}\right\rangle
$$

with N-particle energy eigenvalues E_{α} and the density operator $\hat{\rho}$. A thermodynamic average can then be computed as

$$
\langle A\rangle(N, \beta)=\frac{1}{Z} \int d R\langle R| \hat{A}\left|R^{\prime}\right\rangle \rho\left(R, R^{\prime}, \beta\right)
$$

Partition function

The partition function is the sum over all accessible states weighted with their thermal probability, i.e

$$
Z(N, \beta)=\int d R \rho\left(R, R^{\prime}, \beta\right)=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]
$$

It is a key thermodynamic quantity as all thermal averages depend on it.

Partition function

The partition function is the sum over all accessible states weighted with their thermal probability, i.e

$$
Z(N, \beta)=\int d R \rho\left(R, R^{\prime}, \beta\right)=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]
$$

It is a key thermodynamic quantity as all thermal averages depend on it.

- In energy basis with the eigenvalues E_{i} and corresponding eigenstates $|i\rangle$, the partition function simply reads

$$
Z=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]=\sum_{i}\langle i| e^{-\beta \hat{H}}|i\rangle=\sum_{i} e^{-\frac{E_{i}}{k_{\mathrm{B}} T}}
$$

Partition function

The partition function is the sum over all accessible states weighted with their thermal probability, i.e

$$
Z(N, \beta)=\int d R \rho\left(R, R^{\prime}, \beta\right)=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]
$$

It is a key thermodynamic quantity as all thermal averages depend on it.

- In energy basis with the eigenvalues E_{i} and corresponding eigenstates $|i\rangle$, the partition function simply reads

$$
Z=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]=\sum_{i}\langle i| e^{-\beta \hat{H}}|i\rangle=\sum_{i} e^{-\frac{E_{i}}{k_{\mathrm{B}} T}}
$$

- With any full and orthonormal basis set $\{|j\rangle\}$ the partition function Z can be written as a sum over matrix elements of the density operator

$$
Z=\operatorname{Tr}\left[e^{-\beta \hat{H}}\right]=\sum_{i}\langle j| e^{-\beta \hat{H}}|j\rangle
$$

Results for kinetic and harmonic operators

- Potential energy density matrix in coordinate representation

$$
\begin{aligned}
\hat{\mathbf{r}}_{i}|\mathbf{r}\rangle & =\mathbf{r}_{i}|\mathbf{r}\rangle \\
\langle R| e^{-\beta \hat{v}}\left|R^{\prime}\right\rangle & =\langle R| e^{-\beta \sum v_{\text {ext }}\left(\hat{r}_{i}\right)+V_{i j}\left(\hat{r}_{i}, \hat{\mathbf{r}}_{j}\right)}\left|R^{\prime}\right\rangle=e^{-\beta \sum v_{\text {ext }}\left(\boldsymbol{r}_{i}\right)+V_{i j}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)} \delta\left(R-R^{\prime}\right)
\end{aligned}
$$

Definitions: $\lambda_{D}=2 \pi \hbar\left(2 \pi m k_{\mathrm{B}} T\right)^{-1 / 2},|R\rangle=\left\{\left|\mathbf{r}_{1}\right\rangle\left|\mathbf{r}_{2}\right\rangle \cdots\left|\mathbf{r}_{N}\right\rangle\right\}$.

Results for kinetic and harmonic operators

- Potential energy density matrix in coordinate representation

$$
\begin{aligned}
\hat{\mathbf{r}}_{i}|\mathbf{r}\rangle & =\mathbf{r}_{i}|\mathbf{r}\rangle \\
\langle R| e^{-\beta \hat{v}^{\prime}}\left|R^{\prime}\right\rangle & =\langle R| e^{-\beta \sum V_{\text {ext }}\left(\hat{r}_{i}\right)+V_{i j}\left(\hat{r}_{i}, \hat{\mathbf{r}}_{j}\right)}\left|R^{\prime}\right\rangle=e^{-\beta \sum v_{\mathrm{ext}}\left(\boldsymbol{r}_{i}\right)+v_{i j}\left(\mathbf{r}_{i}, \mathbf{r}_{j}\right)} \delta\left(R-R^{\prime}\right)
\end{aligned}
$$

- Kinetic energy density matrix in coordinate representation

$$
\begin{aligned}
\hat{\mathbf{p}}_{i}|\mathbf{r}\rangle & =\int d \mathbf{p}^{\prime} \hat{\mathbf{p}}_{i}\left|\mathbf{p}^{\prime}\right\rangle\left\langle\mathbf{p}^{\prime} \mid \mathbf{r}\right\rangle \\
\langle\mathbf{r} \mid \mathbf{p}\rangle & =\langle\mathbf{p} \mid \mathbf{r}\rangle^{*}=\frac{1}{(2 \pi \hbar)^{3 / 2}} e^{-i \mathbf{r} \cdot \mathbf{p} / \hbar} \\
\langle R| e^{-\beta \hat{K}}\left|R^{\prime}\right\rangle & =\int d P^{\prime} d P^{\prime \prime}\left\langle R \mid P^{\prime}\right\rangle\left\langle P^{\prime}\right| e^{-\beta \sum \frac{\hat{\mathbf{p}}_{i}}{2 m_{i}}}\left|P^{\prime \prime}\right\rangle\left\langle P^{\prime \prime} \mid R^{\prime}\right\rangle \\
& =\lambda_{D}^{-3 N} e^{-\frac{\pi}{\lambda_{D}^{2}}\left(R_{i}-R_{i}^{\prime}\right)^{2}}
\end{aligned}
$$

Definitions: $\lambda_{D}=2 \pi \hbar\left(2 \pi m k_{\mathrm{B}} T\right)^{-1 / 2},|R\rangle=\left\{\left|\mathbf{r}_{1}\right\rangle\left|\mathbf{r}_{2}\right\rangle \cdots\left|\mathbf{r}_{N}\right\rangle\right\}$.

Density matrix decomposition

- The many-particle Hamiltonian \hat{H} can be written as sum of kinetic energy operator \hat{K} and potential energy operator \hat{V},

$$
\hat{H}=\hat{K}+\hat{V}, \quad[\hat{K}, \hat{V}] \neq 0 .
$$

Density matrix decomposition

- The many-particle Hamiltonian \hat{H} can be written as sum of kinetic energy operator \hat{K} and potential energy operator \hat{V},

$$
\hat{H}=\hat{K}+\hat{V}, \quad[\hat{K}, \hat{V}] \neq 0 .
$$

- The total density operator $\hat{\rho}$ does not factorize simply:

$$
\hat{\rho}=e^{-\beta \hat{H}}=e^{-\beta(\hat{K}+\hat{V})}=e^{-\beta \hat{K}} e^{-\beta \hat{V}} e^{-\left(\beta^{2}[\hat{K}, \hat{V}]+\mathcal{O}\left(\beta^{3}\right)\right)}
$$

$\hat{\rho}$ is not known in general.

Density matrix decomposition

- The many-particle Hamiltonian \hat{H} can be written as sum of kinetic energy operator \hat{K} and potential energy operator \hat{V},

$$
\hat{H}=\hat{K}+\hat{V}, \quad[\hat{K}, \hat{V}] \neq 0 .
$$

- The total density operator $\hat{\rho}$ does not factorize simply:

$$
\hat{\rho}=e^{-\beta \hat{H}}=e^{-\beta(\hat{K}+\hat{V})}=e^{-\beta \hat{K}} e^{-\beta \hat{V}} e^{-\left(\beta^{2}[\hat{K}, \hat{V}]+\mathcal{O}\left(\beta^{3}\right)\right)}
$$

$\hat{\rho}$ is not known in general.

- However, at high temperature (quasi-classical limit) $\beta \rightarrow 0$, thus:

$$
\hat{\rho}=e^{-\beta \hat{H}}=e^{-\beta(\hat{K}+\hat{V})} \rightarrow e^{-\beta \hat{K}} e^{-\beta \hat{V}}
$$

The explicit form of the r.h.s is known. The expressions were listed in coordinate representation on the previous slide.

Density matrix decomposition ||

- Feynman's idea: Use convolution property of density operator

$$
\hat{\rho}(\beta)=e^{-\beta \hat{H}}=\left[e^{-\frac{\beta}{M} \hat{H}}\right]^{M}=[\hat{\rho}(\tau)]^{M}
$$

to write the low temperature density operator as a product of high temperature density operators.

Density matrix decomposition II

- Feynman's idea: Use convolution property of density operator

$$
\hat{\rho}(\beta)=e^{-\beta \hat{H}}=\left[e^{-\frac{\beta}{M} \hat{H}}\right]^{M}=[\hat{\rho}(\tau)]^{M}
$$

to write the low temperature density operator as a product of high temperature density operators.

- Using simplest (first order) approximation at inverse temperature $\tau=\beta / M$ yields:

$$
e^{-\tau(\hat{K}+\hat{V})}=e^{-\tau \hat{K}} e^{-\tau \hat{V}} e^{\mathcal{O}(1 / M)}
$$

We can approximate the density operator with an arbitrarily low error by increasing M.

Density matrix decomposition ||

- Feynman's idea: Use convolution property of density operator

$$
\hat{\rho}(\beta)=e^{-\beta \hat{H}}=\left[e^{-\frac{\beta}{M} \hat{H}}\right]^{M}=[\hat{\rho}(\tau)]^{M}
$$

to write the low temperature density operator as a product of high temperature density operators.

- Using simplest (first order) approximation at inverse temperature $\tau=\beta / M$ yields:

$$
e^{-\tau(\hat{K}+\hat{V})}=e^{-\tau \hat{K}} e^{-\tau \hat{V}} e^{\mathcal{O}(1 / M)}
$$

We can approximate the density operator with an arbitrarily low error by increasing M.

- Additionally, there are higher order approximations which reduce the number of factors M needed to achieve the same error.

Path-integrals

Rewritting the convolution property for the density matrix in coordinate representation yields

$$
\begin{aligned}
\rho\left(R, R^{\prime} ; \beta\right) & =\langle R| e^{-\beta \hat{H}}\left|R^{\prime}\right\rangle=\int d R_{1}\langle R| e^{-\frac{\beta}{2} \hat{H}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-\frac{\beta}{2} \hat{H}}\left|R^{\prime}\right\rangle \\
& =\int d R_{1} \rho\left(R, R_{1} ; \beta / 2\right) \rho\left(R_{1}, R^{\prime} ; \beta / 2\right)
\end{aligned}
$$

Thus, at M-times higher temperature there are $3 N M$ additional integrations.

Path-integrals

Rewritting the convolution property for the density matrix in coordinate representation yields

$$
\begin{aligned}
\rho\left(R, R^{\prime} ; \beta\right) & =\langle R| e^{-\beta \hat{H}}\left|R^{\prime}\right\rangle=\int d R_{1}\langle R| e^{-\frac{\beta}{2} \hat{H}}\left|R_{1}\right\rangle\left\langle R_{1}\right| e^{-\frac{\beta}{2} \hat{H}}\left|R^{\prime}\right\rangle \\
& =\int d R_{1} \rho\left(R, R_{1} ; \beta / 2\right) \rho\left(R_{1}, R^{\prime} ; \beta / 2\right)
\end{aligned}
$$

Thus, at M-times higher temperature there are $3 N M$ additional integrations.

Discrete time path-integral representation of the density matrix

$$
\rho\left(R, R^{\prime} ; \beta\right)=\int \mathrm{d} R_{1} \mathrm{~d} R_{2} \ldots \mathrm{~d} R_{M-1} \rho\left(R, R_{1} ; \tau\right) \rho\left(R_{1}, R_{2} ; \tau\right) \cdots \rho\left(R_{M-1}, R^{\prime} ; \tau\right)
$$

Common abbrevation:

$$
\begin{aligned}
\rho\left(R, R^{\prime} ; \beta\right) & =\int \mathrm{d} R_{1} \mathrm{~d} R_{2} \ldots \mathrm{~d} R_{M-1} e^{-\sum_{k=1}^{M} S^{k}}, \quad \rho=e^{\ln \rho} \equiv e^{-S} \\
S^{k} & =-\ln \left[\rho\left(R_{k-1}, R_{k} ; \tau\right)\right] \approx \ln \left(\lambda_{\tau}^{d \cdot N}\right)+\frac{\pi}{\lambda_{\tau}^{2}}\left(R_{k}-R_{k-1}\right)^{2}+\tau V\left(R_{k}\right)
\end{aligned}
$$

S^{k} is called action, the r.h.s its primitive approximation.

Path-integral representation

Figure: Two particles represented by set of points. The chain is closed and called a "path" (therefore: "path integral")

Density matrix corresponds to a system of interacting polymers with classical action S :

- "Spring" terms hold polymers (paths) together with typical length $\lambda_{\tau}^{2}=\frac{2 \pi \hbar^{2} \tau}{m}$

Path-integral representation

Figure: Two particles represented by set of points. The chain is closed and called a "path" (therefore: "path integral")

Density matrix corresponds to a system of interacting polymers with classical action S :

- "Spring" terms hold polymers (paths) together with typical length $\lambda_{\tau}^{2}=\frac{2 \pi \hbar^{2} \tau}{m}$
- Polymer interaction is given by $V_{\text {ext }}\left(\boldsymbol{r}_{i}\right)+V_{\text {int }}\left(r_{i j}\right)$

Path-integral representation ||

Figure: PIMC results of five particles in a 2D harmonic trap. Left: Snapshot where labels show particles indices. Particles 1 and 2 are the pair exchange. Right: y-component of the paths vs imaginary time $M \tau$.

The term imaginary time is used due to the analogy:

- Time propagation operator $e^{-i \hat{H} \tau / \hbar}$
- Density operator $e^{-\beta \hat{H}}$

Density distribution of 2 trapped particles

Figure: Averaging over many paths configurations yields smooth probability densities in interacting quantum systems.

Basic numerical issues of PIMC

(1) Sampling of trajectories:
it is necessary to explore the whole coordinate space for each intermediate point. This is very time consuming. To speed up convergence: move several slices (points of path) at once.
(2) Construction of more accurate actions:
use effective interaction potentials which take into account two, three and higher order correlation effects. More accurate actions help to reduce the number of time slices by a factor of 10 or more.
(3) Estimation of thermodynamic averages:

Expectation values of physical observables, e.g. energy, momentum distribution, etc. can be evaluated in different ways called estimators. Convergence can be improved by using an estimator with smaller statistical variance.

- Inclusion of quantum statistics:
particle statistics (Fermi/Bose) is accounted by proper symmetrization of the density matrix and sampling in the permutation space (direct sampling from N ! exchanges only those with non-negligible statistical weights).

Outline

Introduction

- Numerical methods for quantum many-body problemsVariational Monte Carlo
- Variational Monte Carlo (VMC)Path-integral Monte-Carlo
- Quantum mechanical averages and density matrix
- Path-integrals
-

Conclusion

- Conclusion

Outline

Appendix

- Mean-field solutions
- Classical partitial function
- Higher order operator decompositions

Mean-field solutions

Starting point - non-interacting Hartree-Fock wave functions.
We introduce $\left(\Psi_{1}, \ldots, \Psi_{N}\right)$ - occupied orbitals and (Ψ_{N+1}, \ldots) - virtual orbitals.

$$
D_{H F}\left(\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right)=\left|\begin{array}{cccc}
\Psi_{1}\left(\mathbf{r}_{1}\right) & \Psi_{1}\left(\mathbf{r}_{2}\right) & \ldots & \Psi_{1}\left(\mathbf{r}_{N}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\Psi_{N}\left(\mathbf{r}_{1}\right) & \Psi_{N}\left(\mathbf{r}_{2}\right) & \ldots & \Psi_{N}\left(\mathbf{r}_{N}\right)
\end{array}\right|
$$

Spin orbitals: $\Psi_{i}(\mathbf{r})=\Phi_{i}(\mathbf{r}) \chi_{S_{i}}(\sigma)$
Spatial part, $\Phi_{i}(\mathbf{r})$, satisfy HF-equations:

$$
\left[-\frac{1}{2} \nabla^{2}+V_{e x t}(\mathbf{r})+\sum_{j=1}^{N} \int d \mathbf{r}^{\prime} \frac{\left|\Phi_{j}\left(\mathbf{r}^{\prime}\right)\right|^{2}}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}\right] \Phi_{i}(\mathbf{r})+\left[\hat{V}_{H F} \Phi_{i}\right](\mathbf{r})=\epsilon_{i} \Phi_{i}(\mathbf{r})
$$

Now we consider excitations to virtual orbitals: single, double, three, ... -body excitations

$$
\Psi=c_{0} D_{H F}+c_{1} D_{1}+c_{2} D_{2}+\ldots
$$

Goal: Construct more compact form of Ψ.

Partition function: interacting part ‘back

- Classical partition function:

$$
Z=Z_{N V T} \cdot Q_{N V T}^{\text {ideal }} \approx \operatorname{Tr}\left[e^{-\beta \hat{H}}\right]
$$

- Configuration integral is the main object of Classical Statistical Mechanics

$$
Z_{N V T}=\int d \mathbf{r}^{N} e^{-\beta V\left(\mathbf{r}^{N}\right)}, \quad R=\mathbf{r}^{N}=\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)
$$

Goal: Evaluate measurable quantities, such as total energy E, potential energy V, pressure P, pair distribution function $g(r)$, etc.

$$
\langle A\rangle_{N V T}=1 / Z \int d \mathbf{R} A(\mathbf{R}) e^{-\beta V(\mathbf{R})}, \quad \beta=1 / k_{B} T
$$

Averaging with the canonical probability distribution (Boltzmann factor) can be performed by the Metropolis algorithm.

- The ideal gas part $Q_{N V T}^{\text {ideal }}$ should be treated quantum mechanically but with the known analytical result.

Partition function: ideal gas part

Consider N particles in a box of volume $V=L^{3}$

$$
\begin{gathered}
\epsilon_{k}=\frac{\hbar^{2} \mathbf{k}^{2}}{2 m}, \quad \mathbf{k}=\frac{\pi}{L}\left(n_{x} \mathbf{x}+n_{y} \mathbf{y}+n_{z} \mathbf{z}\right) \\
\Delta n_{x}=\frac{L}{\pi} d k_{x}=\frac{L}{\pi \hbar} d p_{x}, \quad \sum_{n_{x}, n_{y}, n_{z}} \rightarrow \frac{L^{3}}{(\pi \hbar)^{3}} \int_{0}^{\infty} d \mathbf{p} \\
Q_{N V T}^{\text {ideal }}=\frac{1}{N!}\left(\frac{V}{(2 \pi \hbar)^{3}} \int d \mathbf{p} e^{-\beta p^{2} / 2 m}\right)^{N}=\frac{V^{N}}{N!\lambda_{D}^{d N}}, \quad \lambda_{D}^{2}=\frac{2 \pi \hbar^{2} \beta}{m}
\end{gathered}
$$

Operator decomposition: higher order schemes ‘back

- Commutation relations. Baker-Campbell-Hausdorf formula: For any pair \hat{X}, \hat{Y} of non-commuting operators $[\hat{X}, \hat{Y}]=X Y-Y X \neq 0$

$$
\begin{gather*}
e^{\tau \hat{X}} e^{\tau \hat{Y}}=e^{Z} \tag{1}\\
Z=\tau(X+Y)+\frac{\tau^{2}}{2}[X, Y]+\frac{\tau^{3}}{12}([X, X, Y]+[Y, Y, X])+\frac{\tau^{4}}{24}[X, Y, Y, X]+\mathcal{O}\left(\tau^{5}\right)
\end{gather*}
$$

- Consider now $X=\hat{K}, Y=\hat{V}$ and $\tau=\beta / M \ll 1(M \gg 1)$. General approach to factorize the exponent

$$
e^{\tau(K+V)}=\prod_{j=1}^{n} e^{a_{j} \tau K} e^{b_{j} \tau V}+O\left(\tau^{n+1}\right)
$$

Set of coeff. a_{i}, b_{i} are determined by required order of accuracy from Eq. (1).

- Operator decomposition: n-order schemes

First order: $\quad e^{\tau(K+V)}=e^{\tau K} e^{\tau V} e^{O\left(\tau^{2}\right)}$
Second order: $\quad e^{\tau(K+V)}=e^{\frac{1}{2} \tau K} e^{\tau V} e^{\frac{1}{2} \tau K} e^{O\left(\tau^{3}\right)}$
Fourth order: $\quad e^{\tau(K+V)}=e^{\frac{1}{6} \tau V} e^{\frac{1}{2} \tau K} e^{\frac{1}{6} \tau V} e^{\frac{1}{2} \tau K} e^{\frac{1}{6} \tau V} e^{O\left(\tau^{5}\right)}$,
$\tilde{V}=V+\frac{1}{48} \tau^{2}[V,[K, V]]$ - correction to classical potential

