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1 Introduction

The Thirring model is a completely soluble, covariant (1+1)-dimensional quantum field
theory of a two-component Dirac spinor. We can write the generalized Thirring Lagrangian
as,

LS =
i

2
ψ̄γµ∂µψ−

i

2
(∂µψ̄)γµψ−1

2
(∂µAν)Bµν+

1
2
Aν∂µB

µν−µ
2

2
AµA

µ+
1
4
BµνB

µν+gjµAµ+
σ

2
jµj

µ.

I’ll call this the Sommerfield Lagrangian for it is the more general case of the original
Thirring Lagrangian,

L0 = iψ̄γµ∂µψ +
σ

2
jµj

µ

that Charles Sommerfield studied in the 1960’s. In LS we have the usual two-component
Dirac spinor ψ but also a spin-1 field Aµ and a totally antisymmetric tensor field Bµν .
This model could be relevant for it fits naturally with supersymmetry. In the Lagrangians
I have implicitly defined the classical current,

jµ ≡ ψ̄γµψ.

Important: To attain total covariance of the theory (and for other reasons we will ecounter)
we actually must more carefully define jµ.
We will be using the ”good-man’s” metric g00 = −g11 = −1. The 2× 2 Dirac matrices γµ

obey the usual Clifford algebra,
{γµ, γν} = 2gµν .

We choose the representation via Pauli matrices,

γ0 = σ2 =
(

0 −i
i 0

)
, γ1 = iσ1 =

(
0 i
i 0

)
.

We have the familiar

γ5 = σ3 =
(

1 0
0 −1

)
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with the useful relation
γµγν = −gµν + εµνγ5

where ε10 = −ε01 = 1 is the antisymmetric tensor. Using this antisymmetric tensor we can
write

B =
1
2
εµνB

µν ⇒ Bµν = −Bεµν

which explicitly shows that the field Bµν has only one degree of freedom off-shell.

2 EoM

We can easily derive the equations of motions

−iγµ∂µψ = γµ(gAµ + σjµ)ψ

∂νB
µν = gjµ − µ2Aµ

and of course,
Bµν = ∂µAν − ∂νAµ.

We also have the familiar field commutation relations

[A1(x), B(x′)] = iδ(x− x′)

and
{ψα(x), ψβ(x′)} = δαβδ(x− x′).

3 The Action Principle

As with any quantum field theory, our goal is to compute vac-vac expectation values of time
ordered products. Call such a time ordered product (R)+. As usual the vac-vac amplitude
with no source is,

〈0|0〉 =
∫
DAµD ψ exp

(
i

∫
d2xL

)
.

So varying the expectation value gives the general relation,

δ〈0|(R) + |0〉 = i

〈
0
∣∣∣∣∫ d2x (RδL)+

∣∣∣∣ 0〉+ 〈0|δ(R)+|0〉.

The familiar procedure is to now introduce source terms which will allow us to gain insight
on the vacuum. The external fields we introduce are φµ and Jµ. The the Lagrangian
becomes,

L 7→ L+ φµjµ +AµJ
µ.
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This modifies the equations of motion a bit,

−iγµ∂µψ = γµ(gAµ + σjµ + φµ)

∂νB
µν = gjµ + Jµ − µ2Aµ.

From here on, we assume that the time-ordered products do not have explicit dependence
on the external fields. So,

δ

δφµ(x)
〈0|(R)+|0〉 = i〈0|(jµ(x)R)+|0〉

δ

δJµ(x)
〈0|(R)+|0〉 = i〈0|(Aµ(x)R)+|0〉.

But also,
∂

∂g
〈0|(R)+|0〉 = i

〈
0
∣∣∣∣∫ d2x (Rjµ(x)Aµ(x))+

∣∣∣∣ 0〉
∂

∂σ
〈0|(R)+|0〉 =

i

2

〈
0
∣∣∣∣∫ d2x (Rjµ(x)jµ(x))+

∣∣∣∣ 0〉 .
This allows us to write out differential equationa for the vev’s,

∂

∂g
〈0|(R)+|0〉eσg = −i

∫
d2x

δ

δφµ(x)
δ

δJµ(x)
〈0|(R)+|0〉eσg

∂

∂σ
〈0|(R)+|0〉eσg = − i

2

∫
d2x

δ

δφµ(x)
δ

δφµ(x)
〈0|(R)+|0〉eσg.

Where I have adopted the convention for the subscripts e, σ and g which means the external
fields and couplings are ”turned on”. Simple integration yields,

〈0|(R)+|0〉eσg = exp
[
−ig

∫
d2x

δ

δφµ(x)
δ

δJµ(x)
− i

2
σ

∫
d2x

δ

δφµ(x)
δ

δφµ(x)

]
× 〈0|(R)+|0〉e.

The main point is that we now have an expression for the vev with coupling as a function
of the vev without coupling, which is a much easier quantity to calculate Green’s functions
for. Specifically we have the definition of the n point fermionic Green’s function

G(n)
cσge(x1, . . . , xn, x

′
1, . . . , x

′
n) ≡ G(n)

cσge(x̄, x̄
′) =

in〈0|(ψ(x1) · · ·ψ(xn)ψ̄(x′n) · · · ψ̄(x′1))+|0〉eσg
〈0|0〉eσg

.

The subscripts maintain the same convention and the c just indicates that we’re looking
at the causal solutions. Now using our expression from above we can write,

G(n)
eσg(x̄, x̄

′) =

{
exp

[
−ig

∫
d2x δ

δφµ(x)
δ

δJµ(x) −
i
2σ
∫
d2x δ

δφµ(x)
δ

δφµ(x)

]}
|G(n)

ce (x̄, x̄′)〈0|0〉e|{
exp

[
−ig

∫
d2x δ

δφµ(x)
δ

δJµ(x) −
i
2σ
∫
d2x δ

δφµ(x)
δ

δφµ(x)

]}
〈0|0〉e

.

Where we now explicitly have the form of the coupled Green’s functions in terms of the
uncoupled Green’s functions.
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4 Computing G
(n)
ec (x̄, x̄′)

The n point Green’s function can be written as the Slater determinant of 2 point Green’s
functions,

G(n)
ec (x̄, x̄′) =

∣∣∣∣∣∣∣
Gec(x1, x

′
1) · · · Gec(x1, x

′
n)

...
. . .

...
Gec(xn, x′1) · · · Gec(xn, x′n)

∣∣∣∣∣∣∣ .
Each of the two point functions satisfy the non-homogenous Dirac equation,

[−iγµ∂µ − γµφµ(x)]Gec(x, x′) = δ(x− x′).

Now turn φ off to get the regular Dirac equation,

−iγµ∂µGc(x, x′) = δ(x− x′).

Recall the 2-d representation of the Dirac delta function,

δ(x− x′) =
∫

d2p

(2π)2
eip

µ(x−x′)µ .

So we have solution,

Gc(x, x′) =
∫

d2p

(2π)2
−γµpµ
p2 − iη

eip
µ(x−x′)µ =

1
2π

γµ(x− x′)µ
(x− x′)2 + iη

.

Thus,
Gc(x, x′) = iγµ∂µ∆̃c(x− x′)

where we have introduced the propagator

∆̃c(x− x′) = − i

4π
log[(x− x′)2 + iη].

Now look at
[−iγµ∂µ − γµφµ(x)]γ0Gec(x, x′) = δ(x− x′)γ0 ⇐⇒

(−gµ0 + εµ0γ5)(−i∂µ − φµ)Gec(x, x′) = γ0δ(x− x′).

Take µ = 0, then the LHS is just (−i∂0 − φ0)Gec. Taking µ = 1, the LHS is (−iγ5∂1 −
γ5φ1)Gec. So we can write,

−(i∂0 + iγ5∂1 + φ0 + γ5φ1)Gec(x, x′) = γ0δ(x− x′).

I claim that the external field solution is,

Gec(x, x′) = ei[F (x)−F (x′)]Gc(x− x′)
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where,

F (x) = −i
∫
d2ξ Gc(x, ξ)γ0[φ0(ξ) + γ5φ1(ξ)].

First notice that,

G(x, ξ)γ0[φ0(ξ) + γ5φ1(ξ)] = γµ∂µ∆̃c(x− ξ)γνφν(ξ).

So we can write F (x) more compactly as

F (x) = γµ∂µ

∫
d2ξ ∆̃c(x− ξ)γνφν(ξ).

Now,

[−iγµ∂µ − γµφµ(x)]Gec(x, x′) =
{

[γµ∂µF (x)Gc(x, x′) + δ(x− x′)]− γµφµ(x)Gc(x, x′)
}

exp[i(F − F ′)]

=
{

(γµ∂µ)2
[∫

d2ξ ∆̃(x− ξ)γνφν(ξ)
]
− γµφµ(x)

}
Gc(x, x′) exp[i(F − F ′)]

+ δ(x− x′)

=
{∫

d2ξ δ(x− ξ)γνφν(ξ)− γµφµ(x)
}
Gc(x, x′) exp[i(F − F ′)] + δ(x− x′)

= δ(x− x′).

So it checks out. The determinant thus has the form,

G(n)
ce (x̄, x̄′) =

∑
P

(−1)P exp

{
i
∑
i

[F (xi)− F (x′P (i))]

}∏
j

Gc(xj − x′P (j))

=
∑
P

(−1)P exp

{
i
∑
i

∫
d2ξ n(i)

µ (xi, x′P (i); ξ)φ
µ(ξ)

}∏
j

Gc(xj − x′P (j)).

Where,

n(i)
µ (xi, x′P (i); ξ) = γνγµ∂ν [∆̃(x− ξ)− ∆̃(x′P (i) − ξ)]

= −(∂µ + γ5∂̄µ)[∆̃(x− ξ)− ∆̃(x′P (i) − ξ)].
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5 (Re)Defining the Current

We look at the dependence of 〈0|0〉e on the external fields. First recall,

δ

δφµ(x)
〈0|0〉e = i〈0|jµ(x)|0〉.

Tentatively we wrote jµ(x) = ψ̄(x)γµψ(x). So referring to our expression for Gc(x, x′) and
letting η → 0 we have,

〈0|ψ̄(x′)γµψ(x)|0〉e
〈0|0〉e

= − 1
2π

trα exp[i(F (x)− F (x′))]
γν(x− x′)ν
(x− x′)2

= − 1
2π

trα exp[i(F (x)− F (x′))]
γνζν
aζ2

.

Where the trace is taken over all spinor indices and we have written (x − x′)µ ≡ aζµ.
There is an obvious singularity as x→ x′. To remove this and also to preserve the charge
symmetry ψ → ψ† we define,

jµ(x) =
1
2

lim
x′→x

[
ψ̄(x′)γµψ(x)− γµψ(x′) ¯ψ(x)

]
so that

i

2
lim
x′→x

〈0|ψ̄(x′)γµψ(x)− γµψ(x′) ¯ψ(x)|0〉e
〈0|0〉e

= − 1
4π

lim
x′→x

trαγµ
{

exp[iF (x)− iF (x′)]− exp[iF (x′)− iF (x)]
}

×γ
νζν
aζ2

About x = x′ we have to O(a2),

exp[iF (x)− iF (x′)]− exp[iF (x′)− iF (x)] = (1 + ia∂λ[F (x)− F (x′)]ζλ) − (1− ia∂λ[F (x)− F (x′)]ζλ)

= 2ia∂λF (x)ζλ

Thus,

i

2
lim
x′→x

〈0|ψ̄(x′)γµψ(x)− γµψ(x′) ¯ψ(x)|0〉e
〈0|0〉e

= − i

2π
ζλζν

ζ2
trα[γµ∂λF (x)γν ]

= − i
π

ζλζν

ζ2
[gµσgτν − εµσετν ]∂σ∂λ

∫
d2ξ ∆̃c(x− ξ)φτ (ξ).

There is one more subtlety we need to take into account in defining jµ. Note that the above
expression is not invariant with respect to the path by which we approach x′ → x which

6



takes the covariance out of the theory. To retain covariance we average over two directions
of approach, namely ζµ and ζ̄µ. Our final result is (this time with spinor indices!),

jµ(x) =
1
4
γαβ lim

a→0

[
ψ̄α

(
x− a

2
ζ
)
ψβ

(
x+

a

2
ζ
)

+ ψ̄α

(
x− a

2
ζ̄
)
ψβ

(
x+

a

2
ζ̄
)

−ψβ
(
x− a

2
ζ
)
ψ̄α

(
x+

a

2
ζ
)
− ψβ

(
x− a

2
ζ̄
)
ψ̄α

(
x+

a

2
ζ̄
)]
.

You may ask at this point if all of this touching up with jµ is even allowed. Lorentz
invariance is obvious, but canonical commutation rules (as we shall see) will not be so
simple. Also, the current as it is written is not invariant under the gauge transformation
ψ(x)→ ψ(x)+iδΛ(x)ψ(x) and ψ̄(x)→ ψ̄(x)−iδΛ(x)ψ̄(x), which will have to be considered.
Now with this current,

〈0|0〉−1
e

δ

δφµ(x)
〈0|0〉e = i

∫
d2y vµτ (x− y)φτ (y)

where
vµτ (z) =

1
2π

(gµσgντ − εµσεντ )∂σ∂ν∆̃(z).

Integrating out,

〈0|0〉e = 〈0|0〉J exp
[
i

2

∫
d2y d2y′ φµ(y)vµν(y − y′)φν(y′)

]
.

Or more succinctly as,
〈0|0〉e = 〈0|0〉J exp[φvφ].

Now look at,
δ

δJµ(x)
〈0|0〉 = i〈0|Aµ(x)|0〉J .

Using equations of motion in the absence of φµ we have,

(−� + µ2)Aµ(x) = Jµ − ∂µ∂νAν

and taking the inner product,

(−� + µ2)〈0|Aµ(x)|0〉J =
[
Jµ(x)− 1

µ2
∂µ∂νJ

ν(x)
]
〈0|0〉J =

[
gµν −

1
µ2
∂µ∂ν

]
Jν(x)〈0|0〉J .

Integrating we find,

〈0|0〉J = exp
[
i

2

∫
d2y d2y′ Jµ(y)wµν(y − y′)Jν(y′)

]
” = ” exp

[
i

2
JwJ

]
.
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Where,

wµν(z) =
[
gµν −

1
µ2
∂µ∂ν

]
∆c(µ; z).

And finally

∆c(µ; z) =
1

(2π)2

∫
d2p

eip
µzµ

p2 + µ2 − iη
which is the usual Klein-Gordon Green’s function for a boson of mass µ in two dimensions.

6 Interlude: Completing the Square

We proceed to exponentiate quadratic functional derivatives of quadratic functionals in the
fields. Let us write

χ =
(
φ
J

)
and

C = −
(
σ g
g 0

)
V =

(
v 0
0 w

)
.

Finally, let

N = Nµ(xi, xP (i); ξ) =
(
nµ(xi, xP (i); ξ)

0

)
.

So the desired amplitude is,

Ω ≡ 〈0|0〉eσg = exp
[
i

2
δ

δχ
C δ
δχ

]
(exp[iNχ])(exp[i/2χVχ]).

We can complete the square with the ansatz,

χ′ = χ+NV−1.

So that,

Ω = Ω′ exp
[
− i

2
NV−1N

]
where

Ω′ = exp
[
i

2
δ

δχ′
C δ

δχ′

]
exp

[
i

2
χ′Cχ′

]
.

After differentiating, integrating and more massaging we get the final result,

Ω = Ω0 exp
[
− i

2
NC(1 + VC)−1N

]
exp[iχ(1 + VC)−1N ] exp[i/2χ(1 + VC)−1Vχ].

And where the amplitude of the free theory Ω0 ≡ 〈0|0〉σg (with no external fields) is

Ω0 = exp
[
−1

2
tr log(1 + VC)

]
.
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7 Properties of the Solution

Converting the language from the last section we have,

〈0|0〉eσg = Ω0 exp
[
i

2
φV φ+ iφUJ +

i

2
JWJ

]
which is in our short notation

fXg ≡
∫
d2ξ d2ξ′ fµ(ξ)Xµν(ξ − ξ′)gν(ξ′).

And where (I list here for reference only. It is good to see the structure of these functions
as they come from the act of Gaussian integration.)

Vµν(z) =
1

2π

[
−2∂µ∂ν

1− (α+ λ)2
∆̃c(z) +

λ(µ′gµν − ∂µ∂ν)
(1 + α)(1 + α+ λ)

∆c(µ′; z)−
gµν

1 + α
δ(z)

]

Uµν(z) =
g

2πµ2

[
−2∂µ∂ν

1− (α+ λ)2
∆̃c(z)−

µ′gµν − ∂µ∂ν
1 + α+ λ

∆c(µ′; z)
]

Wµν(z) =
1
µ2

[
−2λ∂µ∂ν

1− (α+ λ)2
∆̃c(z) +

(1 + α)(µ′gµν − ∂µ∂ν)
1 + α+ λ

∆c(µ′; z)
]
.

The coupling constants are adjusted,

α =
σ

2π

λ =
g2

2πµ2

and we have an adjusted mass for the Bosonic Green’s function,

µ′2 =
1 + α+ λ

1 + α
µ2.

The free theory vac-vac amplitude is computed as,

〈0|0〉σg = exp

{
−1

2

∫
d2x

[
δ(2)(0) log[(1− α− λ)(1 + α)]− 1

2

∫ µ′2

µ2

dr2 ∆c(r; 0)

]}
.

This gives a trivial result if you look at it closely. We will reexamine this when look at
a modified Lagrangian and it so happens that the Delta functions cancel and we are left
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with a non-trivial finite amplitude.
The two-point fermionic Green’s function with sources off turns out to be,

Gσgc(x, x′) =
[
exp 2πi

{
2(α+ λ)2

1− (α+ λ)2
[∆̃c(0)− ∆̃c(x− x′)]

+
λ

(1 + α)(1 + α+ λ)
[∆c(µ′; 0)−∆c(µ′;x− x′)]

}]
Gc(x− x′)

As this two point function stand it is ultraviolet divergent for ∆̃c(0) and ∆c(µ′; 0) diverge
at high energies. There is also infrared difficulties with the fermionic Green’s function but
can be avoided by defining asymptotic fermionic states. We must supply an ultraviolet
cutoff in order to further make sense of the limiting process of defining the current.
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