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Abstract

We examine the performance of the Supernova Model Evidence Ex-
tractor (SMEE) algorithm on injected supernova waveforms in different
types of noise. The algorithm performs well in the identification of in-
jected waveforms added to simulated white Gaussian noise at LIGO
S5 levels, ET levels, and ET colored Gaussian noise. However, the al-
gorithm is not equipped for non-Gaussian noise scenarios. A clear bias
is present when the algorithm is forced to choose between two models
in GEO noise, but it cannot successfully identify injected signals with
the current noise model. We conclude that the Gaussian noise model
is not adequate in describing real situations such as GEO noise, and
that the algorithm must be modified to accurately identify waveforms
over noise.

1 Introduction

GEO 600 is the smallest of the gravitational wave detectors in the LSC/Virgo
network, and it utilizes many novel techniques in order to reach comparable
sensitivity to the other detectors of the network. These advanced techniques
will eventually become a part of the upgraded “advanced” versions of the
LIGO and Virgo detectors. GEO 600 is currently engaged in a planned
science run from 2011 to 2015 while the LIGO and Virgo detectors are be-
ing upgraded to their advanced instruments. All of the upgrades necessary
for GEO-HF have been implemented, and so GEO 600 is now operating at
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its planned sensitivity [3]. The Einstein Telescope (ET) is a project concen-
trated on the development of a third generation gravitational wave detector.
The project focuses on observational capabilities and possibilities that will
be present after the projected detection of gravitational waves by the sec-
ond generation detectors. The purpose of ET is to create an infrastructure
that can host several underground gravitational wave detectors that will be
continually upgraded as the associated technology improves[8].

The prospect of detection of gravitational waves is becoming a real possi-
bility due to the current sensitivity upgrades of gravitational wave detectors
around the world, and one promising candidate source for detection is a
core-collapse supernova event. Several waveform catalogs have been pro-
duced from numerical simulations for core-collapse supernovae, and in this
report we focus on two different numerical simulation catalogs. There are
many proposed models for different types of wavebursts that result from
supernova events, and these burst events range in duration from millisec-
onds to one second. Unlike the well-modeled predictions for such events
as binary inspiral, core-collapse supernovae are a poorly modeled source of
gravitational waves.

Numerical models for supernova waveforms are difficult to predict due
to the complexity of the physical processes involved; these include particle
physics, general relativity, and the several mechanisms involved in the super-
nova’s lifespan. This also creates difficulty in detection, because even if the
templates are correct a template based search is computationally impossible
to perform on all data due to the complexity of the signal parameters. Sin-
gular Value Decomposition (SVD) allows us to decompose waveforms into
a small set of basis vectors that effectively span the parameter space for a
type of supernova waveform. We can then search for waveforms by recon-
structing real signals with this small set of basis vectors that describe the
waveform. We can perform Bayesian inference on the resulting reconstructed
waveform to determine whether the signal is a good candidate and which
catalog’s Principal Component (PC) basis vectors best describe the wave-
form. Ideally this information will help us determine the physical processes
that occurred in the detected waveform. It is projected that gravitational
wave observation may be the only way that certain supernova events will be
detected in the near future[6].

In this report we determine the success of a nested sampling Bayes factor
algorithm, which determines the probability of one waveform model over
another once a simulated waveform has been injected into GEO 600 noise.
We inject waveforms from Abdikamalov et. al 2010 [2] and also waveforms
from Dimmelmeier et. al 2008 [1] that both model the magnetorotational
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mechanism from different progenitors. We also have tested various bandpass
filters on both catalogs according to ET sensitivity in an attempt to simulate
how ET would measure a signal.

1.1 Supernova models

The main goals of Bayesian inference when applied to these waveform cat-
alogs are to identify whether a signal is present and to determine which
waveform catalog a signal corresponds. There are two models for the same
mechanism that we primarily study in this report, and we determine our
ability to differentiate between the two catalogs with the algorithm.

A white dwarf that accretes matter from a companion star usually results
in a Type 1a supernova, but in the case of an oxygen-neon-magnesium white
dwarf it is possible that accretion may trigger a gravitational collapse. In this
case, the collapsing core will rebound in a core bounce, lead to the formation
of a proto-neutron star, and then culminate in a collapse-driven supernova.
This scenario results in a relatively small explosion energy and it would be
difficult to observe with electromagnetic means. The use of gravitational
wave searches for AIC waveforms can therefore aid in the detection of this
type of event, which has not yet been detected either with gravitational
or electromagnetic observations[2]. The magnetorotational mechanism is a
process in which the magnetic field is amplified during the core collapse and
post-bounce phases leading to a jet-like explosion that occurs along the axis
of rotation. The Dimmelmeier catalog utilizes the same mechanism but for
supernovae that occur in the life cycles of high mass stars[1]. The similarity
in morphology between the two catalogs also gives the opportunity to test
the algorithm’s ability to distinguish similar waveforms from one another.

(a) Abdikamalov (b) Dimmelmeier
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1.2 Singular Value Decomposition

SVD allows us to decompose a catalog of signals into a relatively small
number of basis vectors that effectively describe the catalog. In order to
decompose the waveforms, we arrange a catalog into a matrix H in which
the columns Hi represent the time series data of each waveform in the cat-
alog. Let the matrix H have dimensions M ×N where M is the number of
waveforms and N is the number of time series data points. We can calculate
the covariance matrix C of H with [4]

C =
1

M
HHT (1)

The eigenvectors of the matrix C form a set of basis vectors that com-
pletely describe the parameter space of the catalog. The corresponding
eigenvalues of these basis vectors describe how well the vectors span the pa-
rameter space. In practice, this allows us to use a relatively small number of
basis vectors to reconstruct a waveform with reasonable accuracy. However,
the calculation of determining the eigenvectors of a matrix is computation-
ally expensive because the dimension N is quite large (in our case 32678,
two seconds of data at the GEO and LIGO sampling rate of 16384 Hz). We
avoid this by finding the eigenvectors v of HTH where

HTHvi = λivi (2)

where vi and λi are corresponding eigenvectors and eigenvalues, respectively.
We then multiply both sides from the left by H so that

HHTHvi = λiHvi (3)

Let us rewrite eq. (1) in the form C = HHT so that from eq. (2)

C(Hvi) = λi(Hvi) (4)

and we see that the eigenvectors of the covariance matrix are now Hvi. We
can now calculate the eigenvectors of C using the smaller M ×M matrix
HHT because M << N . This method reduces the computation costs and
we now have a set of basis vectors describing our catalog H [4].

We utilize for our purposes a linear model from Rover et. al given by [6]

y = Xβ + ε (5)

where ε is the noise vector, β is the vector of principal component co-
efficients that we must determine with our algorithm, X is the matrix with
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columns formed by our chosen number of principal components, and finally
y is the vector that represents the waveform with noise added. We already
know the matrix X and the data measurement y (in this case a simulated
waveform injected into noise). In this model we assume the prior informa-
tion to be a uniform distribution P (β), which leads to our efforts in using
Bayesian inference.

1.3 Bayes factor

Bayesian methods often provide practical solutions to problems that would
otherwise be very difficult with normal statistical methods. One such method
that we use to describe the success of a supernova waveform model is called
the “Bayes factor,” which allows us to weigh two hypotheses against one
another- in this case, two competing models of waveforms or weighing a
waveform against noise (a null hypothesis).

Let the signal that we receive from a detector be represented by the data
D, and the two competing models (hypotheses) as H1 and H2. In general,
Bayes theorem is given by [7]

p(θ|D,Hn) =
p(D|θ,Hn)× p(θ|Hn)

p(D|Hn)
(6)

where p(D|θ,Hn) is known as the likelihood which represents the modi-
fication of the probability by the data collected, p(θ|Hn) is the prior which
represents our state of knowledge about the model beforehand, p(D|Hn) is
the evidence, a quantity that takes a crucial role in model selection, and
p(θ|D,Hn) is the posterior which represents our final state of knowledge
about the truth of the model given the data measured. The posterior in this
case is the probability distribution over the parameter space of θ, which is
one of the principal component coefficients

The Odds Ratio O for our two models H1 and H2 is defined to be

O1,2 =
p(D|H1)

p(D|H2)
× p(θ|H1)

p(θ|H2)
(7)

Thus the odds ratio is the product of the ratio of the two priors and the
ratio of the two evidences. The favored model can be found depending on
whether O1,2 is greater than or less than unity. Often the two priors for
each model are equivalent, so to determine the success of one model over
another we use the ratio of the evidences, which we call the Bayes factor.
In this application we will use the logarithm of the Bayes factor for clarity,
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and one model will be favored over another based on the sign of the result.
Thus the logarithm of the Bayes factor is given by

logB = log p(D|H1)− log p(D|H2) (8)

However, because the two models we have chosen are dependent on θ,
we must integrate over the free parameter space to determine the evidences
p(D|H1) and p(D|H2). In order to remove the dependence of p(D|Hn) on
θ, we utilize the technique of marginalization to integrate over all possible
values of θ. This is given by [7]

p(D|Hn) =

∫
p(D|θ,Hn)p(θ|Hn) dθ (9)

We cannot solve this analytically for our purposes, but we can circumvent
this problem by using a nested sampling algorithm.

1.4 Nested sampling

The nested sampling algorithm allows us to find the evidence and the pos-
terior given the prior and likelihood probability density functions. The ad-
vantage to this method is that it simultaneously searches for peaks in the
distribution and computes the evidence integral in each dimension of the
free parameter space of the PC basis vectors, and it is robust in the analysis
of problems arising from a high dimensionality parameter space [9].

Let Z = p(D|Hn), and let us also rewrite eq. (6) to clarify the calculation
of the evidence integral of eq. (9) [9]

p(θ|Hn)× p(D|θ,Hn) = Z × p(θ|D,Hn) (10)

The requirement that both the prior and posterior be normalized by
definition means that the magnitude of the evidence Z is determined by
the likelihood p(D|θ,Hn). We must sum the product of the prior and the
likelihood for every point in our free parameter space θ so that we can
determine the evidence Z. We have stated that the integral that determines
Z is not analytic, so we must use a subset of points in θ to approximate the
result using a summation.

We will consider a stochastic sampling of the prior distribution to pro-
duce a set of N live points θk where k = 1, 2, ...N . We can now approximate
the integral of eq. (5) with the summation

N∑
k=1

Lkwk (11)
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Where Lk is the likelihood p(D|θk, Hn) which represents a fraction of the
prior over the kth sample and wk denotes the weight

wk = p(θk|Hn)dθ (12)

We must now find the weights associated with each point θk. We can
think of each point as lying on a contour surface of equal likelihood in the
parameter space of θ, and the fraction of the prior enclosed by each contour
surface is the prior mass, denoted Xk. We can now rewrite our summation
in one dimesion as

Z =

∫
L(X) dX =

∑
k

L(Xk)∆X (13)

We know that the prior distribution is normalized, so X1 has a prob-
ability distribution which we equate to the distribution of a new variable
t ∈ [0, 1], which is the maximum of our N random numbers drawn from a
uniform distribution. We continue to take points from the prior limited to
a volume enclosed by Xk with a higher likelihood than L1. We do this iter-
atively so that the volume of the prior enclosed shrinks geometrically. Thus
the integral converges, and we can approximate the weight of each sample
as wk = Xk − Xk−1. We now need only to specify a condition where the
integral terminates, and Veitch and Vecchio [9] have found by experience
that it should continue while Lmaxwi > Zie

5.
Our nested sampling algorithm calculates the logarithm of the evidence

for a waveform reconstructed with a certain set of basis vectors that we
choose beforehand. Once we have a value for that waveform with the basis
vectors, it is a simple matter to subtract the log evidence of the waveform
with other basis vectors or the evidence of the noise only to determine the
Bayes factor B. We are able to determine in this way the success of the
algorithm in correctly identifying a waveform. For example, if we have the
log evidence of a waveform from the Abdikamalov catalog reconstructed
with Abdikamalov basis vectors, we can compare it with the log evidence
for the same waveform reconstructed with the Dimmelmeier basis vectors.
We are interested in this but also that the algorithm does not incorrectly
identify glitches and other noise as waveforms over the injected waveforms.

2 Project log

I will now outline the methods and progress of the research chronologically
to give a context for the following section of results.
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2.1 Using the nested sampling algorithm

The nested sampling and PCA algorithms are the main tools of this re-
search, and so my first task was to learn how to use them properly and also
to gain more experience in programming with Matlab. This was an impor-
tant task because I had to be confident in modifying the architecture of a
pre-written program. I was able to use the algorithm and I began simply
by finding the Bayes factors for randomly selected Abdikamalov and Dim-
melmeier waveforms against one another. This followed the methodology
outlined in Logue 2011 [5]. I was able to successfully use the algorithm and
its companion functions and expand it to use 6 PC basis vectors for extended
accuracy.

2.2 Filtering waveforms

After assuring that I could use the algorithm with confidence, I began to
test various bandpass filters on three different waveform catalogs. Filters
allow us to simulate the effect of instrument sensitivity on the waveform
simulations. My objective was to determine that the unfiltered basis vectors
could faithfully reconstruct a filtered waveform. I utilized the method of the
match parameter from Heng 2009 [4] to determine how well the basis vectors
reconstruct a waveform. This parameter is given by

µi =

∣∣∣∣∣∣
∣∣∣∣∣∣

Z∑
j=1

(Hi, ej)ej

∣∣∣∣∣∣
∣∣∣∣∣∣ (14)

where (Hi, ej) is the inner product of the waveform with the orthonormal
basis vector ej . If we use all of the basis vectors, µi will go to unity, but
Heng 2009 [4] found the number of PC basis vectors needed for a minimal
match parameter µi ≈ 0.80 is approximately 8.

I examined the worst match parameter and the match parameter aver-
age for both an unfiltered and filtered version of the same catalog, and I
found that the minimum match parameter for the filtered waveforms de-
creases dramatically compared to the unfiltered waveforms. The average
values were comparable for both, and the average match parameter for a fil-
tered catalog with a bandpass of 10 - 4000 Hz was usually only 0.01 greater
than the unfiltered catalog. We determined that currently filtering is not
a good method to use on Dimmelmeier or Abdikamalov waveforms because
it removes most of the important features of these morphologically similar
waveforms. It also makes the waveforms even more difficult to reconstruct
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from the unfiltered basis vectors. However, filtering is successful in simulat-
ing real detection of Murphy waveforms because it removes low frequency
noise and real features that we will not be able realistically to detect. A
better simulation of detection conditions will be to decrease the SNR before
utilizing the algorithm.

GEO data characteristically has a large amount of low frequency noise,
and the unfiltered noise can have amplitudes of up to ten orders of magnitude
greater than the amplitude of a simulated signal. We used a bandpass of
100-4000 Hz to filter the GEO noise after splitting it into segments. The
filtered segments were buffered by 1 second on both sides to eliminate phase
offset artifacts from the filtering process.

2.3 Finding Glitches

Glitches are an interesting case of noise that we can use to test the algorithm.
We identified the glitches by visually inspecting spectrograms of each two
second segment of data. The myspecgram function resolves the two seconds
into several pieces and finds a power spectrum of each of these segments,
which is then modified with a running median across the time domain in
each frequency bin to highlight areas with dramatic features. Glitch 1 is
quite dramatic with amplitude differences in most frequencies, while Glitch
2 occurs primarily at low frequencies.

(a) Glitch 1 (b) Glitch 2

Figure 1: Finding glitches in GEO data spectrograms

We simulated the worst-case scenario of signal detection by aligning the
glitch beginnings with the peaks of the simulated waveforms. It is unlikely
that we would be able to detect such a signal, but it is interesting to see
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how the algorithm performs in this case. Figure 2 shows the superposition
of Glitch 1 over a real waveform scaled up three orders of magnitude.

Figure 2: Glitch 1 superimposed over a scaled Abdikamalov waveform

3 Results

The first test of success for the SMEE algorithm was determining whether it
can correctly identify waveforms over noise. Gaussian white noise at LIGO
S5 levels does not pose a problem for the algorithm, and in Logue 2011 [5] the
algorithm can clearly identify most waveforms over noise and also over one
another. The next type of noise we utilized in this report is Gaussian white
noise at ET levels, and then finally we tested ET colored Gaussian noise.
Table 1 shows the performance of the algorithm and that it can distinguish
waveforms over Gaussian noise. The next step in our analysis was to test
the injected waveforms in real GEO noise. Finally, we compared the Bayes
factors for injected waveforms reconstructed with both the Abdikamalov
and Dimmelmeier basis vectors to see the algorithm’s ability to distinguish
between the two similar catalogs.
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S5 level
white

SNR ET level
white

SNR ET level
colored

SNR

208.765 2.749 7825.555 16.283 7760.660 19.296

373.371 3.625 14690.416 22.558 14566.667 25.692

1205.021 6.064 42408.846 35.286 42707.800 42.726

2388.058 8.613 84961.247 47.774 85089.910 57.511

3410.238 9.831 123469.900 57.483 123148.690 67.984

3923.465 10.742 136490.835 59.534 136511.876 71.053

4735.902 11.678 167058.826 69.522 167318.275 77.154

4945.594 11.773 180764.519 70.606 180502.872 80.123

4353.667 10.623 149043.924 63.736 149341.357 73.862

3710.118 10.237 130038.372 62.191 129242.494 68.187

Table 1: Bayes Factors for 10 Abdikamalov waveform evidences against
Gaussian noise evidence and the Signal to Noise Ratio for each waveform
injection

GEO Noise 1 SNR

19859.630 19.399

19860.168 19.866

19860.762 20.476

19860.078 19.852

19860.086 21.361

19860.116 18.803

19860.285 20.608

19860.878 18.227

19858.613 26.193

19858.870 20.307

Table 2: Bayes Factors for 10 Abdikamalov waveform evidences against GEO
noise evidence and the Signal to Noise Ratio for each waveform injection
(still using Gaussian model for SNR and noise evidence and uniform priors)
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Figure 3: Power spectral density for Abdikamalov simulation 5 compared to
ET white noise, ET colored Gaussian noise, and the expected ET B strain

Figure 4: Power spectral density for Abdikamalov simulation 5 compared to
GEO noise 2 and the expected ET B strain
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We can see in Figure 4 that the GEO power spectrum is actually higher
at all frequencies than the example waveform Abd 5 and also higher than the
predicted ET strain. In Figures 5-8 we examine the algorithm’s performance
on injected waveforms into the various sections of noise when it is calculating
the Bayes factor for evidence using 6 Abdikamalov PC basis vectors versus
the evidence using 6 Dimmelmeier basis vectors for the reconstruction of the
injected waveform and that perticular piece of noise (or aligned glitch).

(a) Noise Segment 1 (b) Noise Segment 2 (c) Noise Segment 3

Figure 5: Bayes factors for all Abdikamalov waveform evidences against
GEO noise segment evidence for three different segments of noise. Positive
Bayes factors favor Abdikamalov while negative ones favor the Dimmelmeier
model.

Figure 6: Bayes factors for all Dimmelmeier waveform evidences against
GEO noise segment 3. Positive Bayes factors favor Abdikamalov while neg-
ative ones favor the Dimmelmeier model.
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(a) Glitch 1 (b) Glitch 2

Figure 7: Bayes factors for all Abdikamalov waveform evidences against
GEO noise segment evidence for three different segments of noise. Positive
Bayes factors favor Abdikamalov while negative ones favor the Dimmelmeier
model.

Figure 8: Bayes factors for all Dimmelmeier waveform evidences against
GEO Glitch 1. Positive Bayes factors favor Abdikamalov while negative
ones favor the Dimmelmeier model.
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4 Conclusions

Clearly we see that the evidence for injected waveforms is much greater
than the evidence for Gaussian noise in Table 1. If our sources of noise are
indeed Gaussian, we can be reasonably confident that SMEE will correctly
identify the waveform over the noise. However, our main focus in this report
is on waveform identification in GEO noise, and we see that the Gaussian
noise model is not adequate or accurate. We show the Bayes factors for
the same ten waveforms against GEO noise evidence in Table 2, and it is
evident that there is some problem in using the Gaussian model to find
noise evidence. The SNR is also calculated using a Gaussian model. The
large factors in Table 2 probably result from a scaling issue because the
waveform amplitudes are up to 3 orders of magnitude smaller than the noise
amplitudes. The almost uniform Bayes factors and SNRs also suggest that
the algorithm cannot readily identify the waveform from the noise, possibly
also due to the scaling issue. It is also evident in the power spectrum of
Figure 4 that detecting a signal will be nearly impossible even with filtered
GEO noise in most cases with the noise from GEO overwhelming the injected
signal. We see that the signal is detectable in ET noise and with white
Gaussian noise at ET levels in Figure 3.

In Figures 5-8, we see that when waveforms are injected it makes some
difference in the algorithm’s response suggesting that the waveforms are
not totally overwhelmed. Giving the algorithm two choices of basis vectors
to reconstruct a segment of noise with an injected waveform shows that
the algorithm cannot properly distinguish between Abdikamalov and Dim-
melmeier waveforms. There is a clear bias toward the Abdikamalov basis
vector evidence in some noise segments, but in Figure 8 we see that the
algorithm cannot readily distinguish the injected Dimmelmeier waveforms.
The Bayes factors cluster around certain numbers in all of Figures 5-8, but
this is likely due to the noise. In Figure 5b the algorithm seems to prefer
the Dimmelmeier evidences, but the noise must have some feature that more
closely remembles the Dimmelmeier basis vectors. In Figures 5c, 6, and 8,
the Bayes factors cluster around zero. Only in certain injections does the
algorithm prefer the correct set of basis vectors, but it is not reliable enough
to identify waveforms over noise or over one another.

If we want to assure that this algorithm can work with real sources of
noise, the first step in further analysis will be to improve the prior probability
distribution functions to reflect our knowledge about the noise sources. We
have still been able to examine SMEE’s preferences of waveforms, but it is
necessary that we know whether we can reliably identify a waveform against
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noise. After we have accomplished this, we can then move to the task
of adjusting the algorithm to identify signals against one another. We have
successfully shown that the algorithm only performs its function in Gaussian
noise scenarios, but that more adjustment is needed for success in real data.
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5 Appendix – Data files, functions, and scripts

• Folder GEOdata
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– glitchandData3.mat 5 segments of GEO data (Col 1-3 random
noise, Col 4,5 glitches)

– hour08 and hour13 raw segments of GEO data.

– timedata26206.mat, timedata27434.mat, timedata42606.mat
filtered (100-4000Hz) two minute segments from hour08 and hour13

– splitdata.m splits the raw segments into a chosen length, filters,
and buffers the segments. From 60 minutes of data you get 29 two
minute segments because the first and last second are buffered.

• Folder injectData100
For each file the columns are as follows: Col 1 – SNR, Col 2 – noise
evidence using Gaussian noise model, Col 3 – Evidence for waveform
reconstructed with Abdikamalov basis vectors, Col 4 – Evidence for
waveform reconstructed with Dimmelmeier basis vectors.

– AbdInjectGlitch1 100.mat, AbdInjectGlitch2 100.mat 106
Abdikamalov waveforms injected into two GEO glitches.

– AbdInjectNoise1 100.mat, AbdInjectNoise2 100.mat, Ab-
dInjectNoise3 100.mat 106 Abdikamalov waveforms injected
into three random sections of GEO noise from glitchandData3.mat

– DimInjectGlitch1.mat, DimInjectGlitch2.mat 128 Dimmelmeier
waveforms injected into two minute sections of GEO glitches.

– DimInjectNoise1.mat, DimInjectNoise2.mat, DimInject-
Noise3.mat 128 Dimmelmeier waveforms injected into three ran-
dom sections of GEO noise from glitchandData3.mat

– gaussnoiseBayes.mat Five pieces of white Gaussian noise at
GEO levels injected blindly into algorithm.

• Folder injectData500
This folder contains similar data to injectData100 but the data has
been bandpass (500-4000Hz) filtered incorrectly.

• Folder Simulation

– data * sets of waveform simulations from each catalog labeled
accordingly.

– vectors * sets of PC basis vectors for simulations from each cat-
alog labeled accordingly.

– ET noise.mat two minutes simulated Gaussian noise colored
from ET sensitivity curve.
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– gaussNoisegeolevel.mat Five pieces two minute long segments
of white Gaussian noise at GEO levels.

• Folder Functions
Scripts and functions for various purposes

– myspecgram.m function makes a spectrogram of a 2 second
piece of data with a chosen time resolution in fractions of a second
(e.g. If you want it in 0.25 s increments, res = 0.25)

– nested 2.m script that finds the Bayes factors with scaling ad-
justed for GEO noise and prior ranges for 10−19.

– splitdata.m function splits long time series data into segments
of your choosing, filters, and buffers
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