
	  

Abstract 
 
 This paper outlines the process of building and testing a Mach-
Zhender Interferometer optical setup that employs phase modulation for 
the purpose of testing the Deep Phase Modulation technique for recent 
improvements in the signal processing of the interferometric signals. The 
paper will discuss the interferometer assembly and all it’s components, 
as well as the signal processing technique of spectrum analysis through 
Discrete Fourier Transforms. 
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1 Introduction 
	  
1.1 Experiment Overview 
	  
Almost one century ago, Einstein predicted the existence of waves in 
the space-time medium, which set in motion the beginnings of what 
was to become a worldwide search for evidence of these oscillations. 
In addition to reinforcing General Relativity, the discovery of 
Gravitational Waves (GW) would open a new stream of information 
from the stars, which could hold insights to any number of mysteries 
in the world of physics, and could discover many more.  

An important development in the search for gravitational waves 
has been the effort to construct the Laser Interferometer Space 
Antenna experiment, which, when completed, would allow visibility 
of potential GWs at lower frequencies. This would be instrumental in 
GW analysis, as it would allow for the detection of various 
phenomena, invisible to ground-based detectors, such as the 
coalescence of massive black holes, which are too susceptible to 
seismic noise at these frequencies (mHz-Hz).  

 



	  

1.2 Deep Phase Modulation 
 
LISA will most likely employ a Homodyne Deep Phase Modulated 
Interferometer, a new technique for signal processing, which 
eliminates some of the inherent complexities in Heterodyne 
Interferometry instrumentation needed to modulate laser frequency, 
in favor of the more computationally complex phase modulation with 
greater dynamic range, needed for the large range of separation 
between the spacecraft. This is critical for LISA, because it allows the 
spacecraft to measure the phase of a signal over several fringes, while 
the modulation can adjust for the motion of the spaceships relative to 
each other. The compact Deep Phase Modulation Interferometry 
(DPMI) introduces a sinusoidal modulation frequency into the beam, 
which leads to a time-dependent interferogram, which is illustrated in 
figure 1. Figure 1 also schematically depicts the Mach-Zhender 
interferometer 

 
Figure 1: Modulation Sinusoid and Resulting Interferogram  

 



	  

 
Figure 2: Waveform of Interferogram showing different values of 

Phi (interferometer phase) 

When a hypothetical GW causes a change in arm-length, the 
interferometer phase (φ) will change, because of the optical pathlength 
difference. The beam that travelled through an altered pathlength will be 
phase shifted. Our interferometer phase value comes from the difference 
in phases of the two beams, which gives us our fundamental metric for 
detection. The various positions of φ are illustrated in the modulation 
patterns of Figure 2.  
 
1.3 Implementing DPMI Theory 
 
The output signal is periodic with the modulation frequency and its 
shape depends on φ, as is illustrated. The proposed sensitivity for LISA, 
using this method, is of the order 20 pm/Hz with an angular resolution of 
10nrad/ Hz above 3 mHz frequencies [4]. It can be computationally 
tedious to retrieve arm-length change from the modulate signal, 
however, with decreasingly expensive computational power this poses 
less and less of a problem. The new aspect of this approach is its use of 
larger modulation depths, such as 10 or 20, which allows for greater 
dynamic range. 

We extract the phase from the established “J1 ...J4” method [1-3], 
which computes the four unknowns of the system, given the height of 
the harmonics of the modulated signal. The photodiode voltage output 



	  

will produce a spectrum with peaks at multiples of the modulation 
frequency (fmod). These peak amplitudes can be expressed in terms of the 
Bessel functions Jn(m), where m is the modulation depth, or amplitude of 
fmod. The output of a phase-modulated homodyne interferometer has the 
form 
 

V!" 𝑡 =   𝐴   1 + Ccos φ   +mcos ω!  𝑡   + ψ   .   (1) 
 
VPD represents the Photo-Diode Voltage and ωm = 2π fm [4]. We have an 
arbitrarily large number of these peaks available to us, but we will only 
require a handful of them to determine the four unknowns, which are m, 
φ, modulation phase (ψ) and a common factor (k). φ represents the 
interferometer phase, while modulation phase ψ represents the phase of 
the modulation signal, and the A is determined by nominally constant 
factors such as light powers and photodiode efficiencies. Contrast 
depends on factors such as beam alignment; meaning that if two beams 
don’t match up when they reach the diode and their radii are not equal, 
VPD will be non-zero at its minimum. The formula for contrast is as 
follows 
 

𝐶 = !!"#!!!"#
!!"#!!!"#

   (2) 
 
Thus, if there is a difference in power between the two beams that arrive 
at the diode, there will be a contrast 𝐶 ≤ 1  that affects the possible 
strength of the signal. Equation 1 can be expanded in terms of its 
harmonic components as 
 

𝑉!" 𝑡 = 𝑉!" 𝜑 + 𝑎! 𝑚,𝜑 cos  (𝑛(!
!!! ω!𝑡 +   ψ))    (3) 

 
with  

𝑎! 𝑚,𝜑 = 𝑘𝐽! 𝑚 cos 𝜑 + 𝑛 !
!

 (4) , and 

𝑉!" 𝜑 = 𝐴(1 + 𝐶𝐽! 𝑚 cos 𝜑 ) (5) 
 



	  

Where 𝑘 = 2𝐶𝐴, and Jn(m) are the Bessel functions. In order to produce 
spectra from the voltage time-series, the series is split into sections of 
length N, which are Fourier transformed. Here, 𝑛 = 1…𝑁 − 1, meaning 
we produce N harmonic amplitudes 𝑎! , where 𝑎!  represents the DC 
component 𝑉!" , which is not used for the purposes of our experiment. 
These harmonic amplitudes are complex and their imaginary component 
is determined by the modulation phase. To compute the real magnitudes, 
we use the following relation 
 

𝛼! 𝑚,𝜑 = 𝑎! 𝑚,𝜑 𝑒!"#    (6) 
 

however, the measured amplitudes 𝛼 𝑚,𝜑  contain an imaginary part 
because of errors and distortions in the analog electronics which can’t 
perfectly calculate the modulation phase. To determine the four 
unknowns from our harmonics, we need a least-squared algorithm to 
efficiently calculate the unknowns, given more measured values than 
unknowns. 

The OROPM program, written by Felipe Guzmán Cervantes, 
Antonio García Marín, Vinzenz Wand and Gerhard Heinzel, was used to 
do the analysis on the signal resulting from the interferometer I built, 
however, it was important to have a thorough understanding of the 
theory which was being applied to the interferometer output, in order to 
conceptualize the experiment. I also spent a large amount of my time 
configuring and compiling software to allow for this data processing; 
included in this software was a program, NISAM, used to quickly check 
the raw signal from the interferometer. Familiarity with these software 
tools was instrumental in building and testing the interferometer.  
 
2 Experimental Setup 
 
2.1 Optical Bench 
 
I was responsible for assembling the optical Mach-Zhender 
Interferometer, and the analog processing thereof. We began by splitting 



	  

 
Figure 3: A non-planar ring oscillator (NPRO) Nd:YAG laser producing 300 
mW at 1064 nm was used as light source. The optics in front of the laser clean 
the beam and prevent reflection back into the laser, which could harm the 
diode.  

a non-planar ring oscillator (NPRO) Nd:YAG laser, producing 300 mW 
at 1064 nm (shown in figure 3), and recombining the beam, as shown in 
figure 6A (A schematic depiction of the Breadboard is shown in figure 
6A). The laser beam is first routed through, and split by, optical fibers 
before it enters the optical bench Breadboard. This allows us to use the 
interferometer as a modular unit, which can be replaced, after testing, by 
the optical bench in vacuum, which is the test model optical bench for 
LISA pathfinder. The two beams are put through Piezoelectric 
Transducers (PZT), pictured in figure 5, where changing the pathlength 
modulates the beam phase. When we apply a signal generator to the 
PZT, we can insert our modulation frequency.  

After the PZTs, the beams exit the optical fibers through a fiber 
collimator and are joined by the beam splitter (BS). The mirror on the 
bottom right of figure 4 reflects the lower laser into the BS, where the 



	  

 
Figure 4: after an optical fiber beam splitter splits the beam, the two beams 
enter the PZTs on the right of the board. The free beams are then recombined 
in the beam splitter, which has two resultant beams with interference, read by 
the photodiode (grey box on the left). 

BS produces two phase modulated, interfered beams, which have a 
phase difference of 𝜋. Figure 4 shows one photodiode, receiving one of 
the beams (the grey box at the top left of the Breadboard). The second 
photodiode for the other resultant beam is not yet installed in figure 4, 
but would be directly above the beam splitter (at its other output). Figure 
5 shows the PZT, a component, which consists of a piezo-electric 
ceramic ring, a material called HS/HT, wrapped by optical fibers. A 
voltage is applied to change the ring radius, stretch the fiber loops, and 
therefore the pathlength of the beam, thereby allowing us to modulate 
the phase with the voltage from the Numerically Controlled Oscillator 
(NCO), or signal generator.  

Although two PZTs are present on the Breadboard in figure 4, the 
NCO only applied voltage to one of them, for the duration of my work. 
The reason for a PZT on each beam is to make optical pathlength 



	  

comparable and to anticipate the possibility of injecting test signals or 
implementing optical pathlength stabilization with the second PZT. The 
tissues under the PZTs and the BNC voltage input serve to insulate the 
components from the breadboard, in particular the BNC adaptor, because 
it is not grounded. During beam alignment, we had to adjust the pitch 
and yaw of the mirrors to align the beam, while paying attention to  

 
Figure 5: PZT fiber optic cables wrapped around a metal ring. The positive and 
negative wires apply the voltage from the NCO across the ring. The negative 
black wire on the inside, and the positive red wire on the outside apply the 
voltage across the ring. The white cable is one output of the fiber beam splitter 
and it is connected to the green PZT optical fiber by the beam joiner at the 
bottom of the image. 

scattered light. Imperfections in the mirrors and BS, as well as the fiber 
optic beam splitter, may have caused some of the scattered light, which 
we were not able to put into the diodes.  With the indicator cards, some 
scattered light could be found, but not eliminated. The main concern 
about scattered light and beam alignment was the power lost by either 
beam, before the diode received it, which would contribute to the 
contrast. 



	  

	  
 

	  

Figure	  6A:	  Optical	  Bench	  with	  Input	  and	  Output.	  	  

Figure	  6B	  Analog	  Processing	  Schematic	  of	  one	  photodiode	  output	  

 
 
 
2.2 Analog Processing Setup 
 
Figure 6A shows a schematic depiction of the Breadboard and figure 6B 
shows the analog processing thereof. The signal to be processed from the 



	  

photodiode in the interferometer (IFO) enters a Transimpedence 
Amplifier (TIA), which will allow us to measure the Transfer Function 
later. The TIA leads to an Anti Alias Filter to eliminate the aliases above 
the Nyquist Frequency. This is essentially a low-pass filter. The signal is 
then split into two streams for noise analysis. The difference between 
these two streams will produce a null measurement to illustrate the noise 
resultant from one Photodiode. These two streams are then passed to the 
sample and hold (S&H), which will take the eventual 4 outputs (one 
from each photodiode) and hold the signal in each channel according to 
an external trigger, and then pass them to the Analog-to-Digital 
Converter (ADC). This ensures that, although the ADC samples its 
channels serially, it will acquire simultaneous measurements of the 
signal. The ADC passes the signal to the Data Acquisition Card (DAQ), 
in the PC, which will deliver the signal to the PC for the DFT and other 
digital processing. A problem arises, however, if we do not synchronize 
the ADC to the NCO because the DFT to be applied assumes a 
continuous periodic signal, and if the ADC is not coherently sampling 
within the period, the DFT will show noise from the truncated periods. 
We inject a modulation frequency of 280 Hz at 4.5 Vpeak-peak and install 
another NCO to be externally triggered by the primary one, so that we 
have another output, this time at 100 kHz, for the S&H and the ADC, 
which is coherent to the 280 Hz modulation frequency.  
 
3 Data Processing and Discrete Fourier Transforms 
 
3.1 Theory 
 
In order to observe a coherent signal at some frequency, we need to 
sample at a frequency of at least twice that frequency. This maximum 
observable frequency, given a certain sampling frequency fsamp, is the 
Nyquist frequency (fNy), and the relation goes like  
 

𝑓!" =
!!"#$

!
    (7) 



	  

Assuming that there aren’t any frequencies equal to or higher than the 
Nyquist frequency in our signal, all aliases caused by sampling will 
occur above the Nyquist frequency. This is the reason we apply an 
appropriate Anti Aliasing Filter to the signal. Given our constant fsamp at 
100 kHz we have a time-series of equidistant samples from the ADC to 
process. The goal of the Discrete Fourier Transform (DFT) is two 
graphs, one of a linear spectrum and the other of a linear spectral 
density. The Equivalent Noise Bandwidth (ENBW) factor relates them 
to each other. The power spectrum and spectral density are also 
noteworthy, and can be found by squaring the linear spectral density or 
spectrum, but are not as accessible as their linear counterparts, because 
the linear graphs mirror the amplitude of the injected signal and noise in 
𝑉 or 𝑉 𝐻𝑧. The two spectra can also be expressed in decibels, usually 
during transfer function investigations. The decibel (dB) is a log ratio of 
a value to some reference amplitude (1 V in our case). The rms 
fluctuation of the linear spectrum can be determined from the linear 
spectral density by integrating over the frequency range. The general 
method of DFT transforms a vector of N complex numbers xk, k = 
0…N-1, into another vector of ym, m = 0…N-1, though in our case, we 
will take a vector of real numbers and produce a vector of complex 
numbers [4]. We will be employing the DFT to achieve an amplitude vs. 
frequency graph from a time series of amplitude, or rather, many time 
series, each of length N. The basic forward DFT definition is as follows: 
 

𝑦! = 𝑥!exp  !!!
!!! −2𝜋𝑖 !"

!
, 𝑚 = 0…𝑁 − 1   (8) 

 
For the purposes of this work, we needed to employ a Fast Fourier 
Transform (FFT) package, which computes the transform approximation 
in a computationally efficient manner. The specific package used to 
compute y was from the FFTW library. Because the input time series is 
always real, the first and second halves of the output will be complex 
conjugates of each other, meaning we only require half of them. This 
means we have 𝑁 2 complex values for our spectrum and, therefore, 
𝑁 2 non-negative real amplitudes.  



	  

 An important concern, when analyzing spectra is our frequency 
resolution, defined by 

𝑓!"# =
!!"#$

!
,   (9) 

where fres represents the width of a frequency bin, so that it’s size 
determines how many distinct peaks we can see. Maximizing sampling 
frequency is one of the main concerns of this experiment because my 
task was to replicate the optical setup of previous experiments for tests 
with higher sampling frequency, and with the eventual goal of replacing 
the analog processing components with a field programmable gate array.  
 
3.2 Window functions 
 
The reason for synchronization of the modulation frequency to the 
sampling frequency also plays into the post-processing of the signal. The 
OROPM software applies window functions to the time series to 
mitigate discontinuities. In order to apply a DFT, we can apply a 
window function to each section of N samples of the time series. Since 
the DFT expects a continuous signal, we taper the ends of each section 
of N samples to zero to eliminate any discontinuities in the signal, and 
overlap these window functions in a manner illustrated in figure 7. After 
the window function is applied, we normalize the results to account for 
the loss in amplitude, and average over many overlapped sections. The 
window function applied is a type of transfer function 𝑎 𝑓 , at a certain 
frequency offset.   

Many different possible window functions can be used, each of 
which has a compromise between side lobe amplitude and usable 
bandwidth. Sidelobes are the undesirable peaks in the spectrum, which 
are next to the peak spectrum. We can show how the window function 
isolates a peak frequency, and suppresses sidelobe frequencies by 
looking at figure 8, the Hanning Window Function in the frequency 
domain. We want to reduce the level of the sidelobes, however, 
increasing the suppression increases the bandwidth of the window 
function. A bandwidth, which is too high is undesirable, as it will cause 
information from the sidelobes to leak into the central peak. Thus, a 



	  

compromise must be made between sidelobe suppression and error in the 
central peak. For this reason, there are a variety of window functions, 
which can be applied depending on the signal to noise ratio of the signal 
(its tolerance for noise leakage). 
 As an example, I’ll discuss the Hanning window, shown in figure 
9, which has three windows applied to a time series. It is defined as 
follows: 
 

𝜔! =
!
!
1 − 𝑐𝑜𝑠 !!∗!

!
; 𝑗 = 0…𝑁 − 1,     (10) 
 

where 𝜔! is the value of the window function to be applied to the correct 
time series value 𝑥!. The window function is symmetric, so that 
 

𝜔! = 𝜔!!! 
 

in order to normalize, after the window function had been applied, we 
define the following two sums: 
 
 

𝑆! = 𝜔!!!!
!!!                           𝑆! = 𝜔!!!!!

!!!  (11) 
 
These values are used to calculate the normalized power spectrum, or the 
square of the room-mean-square voltage as follows: 
 

𝑃𝑆!"# 𝑓! = 𝑚 ∗ 𝑓!"# = !∗ !! !

!!!
;𝑚 = 0… !

!
,   (12) 

 
where PS is the rms power spectrum, m is the bin number, 𝑓! is the 
frequency of the bin, and 𝑦! is the amplitude of the bin. Next, we can 
make use of 𝑆! to calculate the rms power spectral density as follows: 
 

𝑃𝑆𝐷!"# 𝑓! = 𝑚 ∗ 𝑓!"# = !∗ !! !

!!"#$∗!!
;𝑚 = 0… !

!
, (13) 

 



	  

 
 
 

	  
Figure	  7:	  Segmented	  data	  stream	  with	  window	  and	  overlap	  source:	  [4]	  

	  

	  
Figure	  8:	  Hanning	  Window	  Function	  source	  [4]	  

	  
	  
	  



	  

	  
	  
	  

	  
Figure	  9:	  Hanning	  Window	  applied	  to	  a	  time	  series.	  (no	  overlap).	  source:	  
[4] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



	  

4. Testing and Configuration 
 
4.1 Initial Results 
 
After assembling the optics and configuring all the programs, we were 
able to take time-series several hours long. The first data run was taken 
without analog processing (no AAF or S&H), and with diodes, which 
had integrated TIAs. After this run, we installed the analog processing 
and took another data set. The lowering of the noise floor caused by the 
analog processing and synchronization can be seen in figure 10 (the 
difference between the red and blue data). These are the results of a null 
measurement, achieved by subtracting the phase of two outputs, from 
one photodiode (we produce two outputs by splitting the BNC cable), 
and taking a spectrum of the results. This gives us the noise in one of the 
diodes.  

After installing the analog processing, we replaced the original 
photodiodes with quadrant photodiodes and standalone TIAs so that we 
could measure the transfer function of with the circuit, shown in figure 
14. The green data in figure 10 shows the null measurement spectrum 
after we replaced the diodes with quadrant diodes and a standalone 
TIAs.	  
 
 
  



	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

Figure	   10:	   	   Spectral	   Density	   of	   the	   null	   measurement	   before	   analog	  
processing	  (red),	  after	  (blue),	  and	  with	  quadrant	  diodes	  (green).	  The	  AAF	  
and	   synchronization	   improved	   the	  noise	   floor	   significantly,	   however,	   the	  
progress	   was	   undone	   by	   the	   quadrant	   photodiodes	   and	   standalone	   TIA	  
being	  added	  to	  the	  circuit.	  

 



	  

	  
Figure	  11:	  Both	  Quadrant	  Photodiodes	  installed,	  at	  both	  BS	  outputs	  

Unfortunately, the noise level increased to above its original value, 
which could have been caused by the standalone TIA’s in the circuit (the 
analog processing and synchronization were still operational). The 
quadrant photodiodes can be seen in figure 11; a picture of the BS and 
its two outputs, received by the diodes. 
 After examining the noise floor of the null measurement, we can 
check the quality of our data by comparing the difference of the phase in 
the two diodes to 𝜋, because the signal is reflected by one output of the 
BS and transmitted by the other, causing one signal to be the mirror 
image of the other, which, as can be seen in figure 2, means a difference 
of 𝜋 in the phase. Therefore, we take the phase of the two outputs and 
subtract to show the result in figure 12, which, as expected, is in the 
vicinity of 𝜋. 
 Now that we know that our data is reliable, we can take a look at 
the spectrums of the interferometer output. Figure 13 shows the data 
from the 



	  

	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
same runs as figure 10, however, the improvement caused by the analog 
processing and synchronization are not as apparent, and the loss of 
sensitivity due to the replacement of the diodes is even more apparent. 
The improvement of the analog processing is most apparent in the range 
from 1 to 10 Hz. 
 The large loss in sensitivity due to the new diodes may have been 
due to beam alignment because one of the quadrant photodiodes only 
had one operational quadrant, which may not have received the entire 
power of the beam. This issue was unfortunately, not resolved. 
 
4.2 Transfer Functions 
 
The analog processing gives us a much better noise floor, however, it 
comes at the expense of distortions to the signal due to the increased 
electronic circuitry, in particular the AAF. This distortion affects each 
frequency predictably, and each component alters the spectrum of the 
signal in a predictable way. Fortunately, we can measure this altered 
spectrum, and account for it in the final analysis. The function, which 
cancels this effect, is called the Transfer Function (TF), and it has this 
form: 

𝛼! = 𝑎!  𝛾!    (14) 

Figure 12: Pi difference of two photodiodes 



	  

 
 Each electronic component has its own TF, however, the largest  
 
 
 
 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	   Figure 13: Spectral Density of the interferometer output. 



	  

where 𝑎!  is the amplitude of some frequency bin, and 𝛾! is the TF, at 
that frequency, which accounts for the distortion. The product, 𝛼! is the 
resultant amplitude, after the TF is applied. The large culprits, in terms 
of TFs, in our setup are the TIA and the AAF. This is the reason for 
replacing the previous diode boxes, which had built in TIAs, with 
separate TIAs and diodes. To find the TF of the TIA, without the 
photodiode, we needed separate electronic components, otherwise, we 
could not have set up the circuit to measure the TF, as shown in figure 
14. The device, which we used to measure the TF is called a Network 
Analyzer (NA); it produces a sine sweep, which is a sinusoidal voltage 
that increases its frequency over a specified range. The sweep is applied 
to a circuit and the NA measures the response as the frequency changes, 
and produces the spectrum of our transfer function. This process can be 
applied to individual components, or to a circuit as a whole. The purpose 
of the TIA is to convert a current, produced by the PD to a voltage. In 
order to measure the TF of the circuit, we must match the resistance in 
the TIA with an external resistance. This resistor is needed to inject an 
electrical signal from the NA, which is always in voltage, but needs to be 
converted to current. We chose to put the resistor value as the TIA 
resistor to end up having an amplifier gain of one for the TF 
measurements (not to alter the TF). 

The NA records the TF and it’s phase, which improves the 
estimation of the capability of the modulation phase. As a check of the 
system, we took TFs of each individual component and multiplied them 
together to check against the TF of the whole circuit. However, we ran 
out of time to complete this check, as this was done during the last few 
days, we had available. 



	  

	  

Figure 14: NA applied to the combined circuit of the AAF and the TIA. The 
photodiode is shown to illustrate where it would send its signal into the circuit, 
but is not attached so that the NA can do its job. R1 = R2. 

The process of estimating transfer functions is detailed in [5].  
The transfer function can also be described in the following form: 

𝐻 𝑠 = !(!)
!(!)

     (15) 

where H is the TF, O is the desired output signal, and I is the input 
unaltered signal.  

We had to use two different resistor configurations for R1 in 
figure 14, because of the fact that one of the quadrant photodiodes only 
had one operational quadrant. This meant creating 4 resistors in parallel 
for the diode with all quadrants functioning, and 1 resistor for the 
photodiode with 1 quadrant. The two resistors I made can be seen in 
figure 16. Some of the TF’s taken from the individual components and 
their combinations can be seen in figure 15. 



	  

 Figure	  15:	  Various	  transfer	  functions	  taken	  for	  individual	  components	  
(multiple	  TIAs,	  one	  AAF),	  and	  their	  combinations.	  We	  also	  had	  
different	  resistors	  for	  each	  TIA,	  due	  to	  the	  different	  quadrant	  diodes	  
(one	  with	  only	  one	  channel	  of	  input) 



	  

 
 

	  
Figure	  16:	  the	  left	  resistor	  is	  for	  the	  single	  quadrant	  photodiode,	  while	  the	  
one	  on	  the	  right	  has	  four	  resistors	  in	  parallel	  for	  the	  4	  quadrant	  diode.	   

 
4.3 Poles and Zeros 
 
The next step in setting up the interferometer and processing equipment 
is fitting a model to the aforementioned transfer functions to be applied 
to any data coming out of the interferometer. We use the poles and zeros 
model to be able to determine a fit, which characterizes the important 
points of the transfer functions. The model is as follows: 
 

𝐻 𝑓 =   𝐴!
!! ! ∗…∗!!" !
!! ! ∗…∗!!" !

exp  (−2𝜋𝑖𝑓𝑡!"#$%)     (16) 

where 𝐴! is the overall gain, 𝑡!"#$% is the delay time, whose effect is a 
phase shift that grows proportional to the frequency. The model 
characterizes the fit formula with zeros, which initiate a downward turn 



	  

in the amplitude as frequency increases, and poles, which do the reverse.  
A double zero (two zeros at the same location) sharply lowers the 
function as frequency increases and a double pole sharply raises it. If a 
pole is given a quality factor, it becomes a peak in the spectrum, where 
the quality factor determines its width.  I used the LISO software 
package, written by Gerhard Heinzel, to apply a fit to the TF. The 
literature explaining the use of LISO and the process of determining 
poles and zeros is the LISO manual [6].  
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