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Abstract

It hasrecently come to light that the current noise model in use
at GEO600 may be lacking a necessary holographic noise component, a
theory which was proposed by Craig Hogan. Even in the event that the
necessity of holographic noise is a certainty, there ikassignificant
guantity of noise which is unexplained by the current noise model. This
report seeks to explore several simulated noise sources which complete
this noise model. This objective was attempted by using Markov chain
Monte Carlo methods of detaniningthe posterior probabilitief
interest in each of the various models studied.

1 Introduction

The gravitational wave detector GEO600 is a Michelson type interferometer located near
Hannover, Germany. With an armlength of 600 meters, GEOG600 ssrthitest of the detectors in th
LIGO Scientific Collaboration, and as such it has implemented many advanced means of innovation
which allow it to take data of equal value to that of the larger detectors. Among these innovations are
folded arms which givan effective armlength of 1200 meters, power recycling, sigg@jcling, and
with upgrades that began 2010 anoutput mode cleaner and the use of squeezing to limit shot noise.
These advanced techniques allowed GEO600 to partdiseeidata taking rug with the larger detectors
beginning in 200band these techniques will also be applied to the larger detectors in upgrades that will
result in Advanced LIGO and Advanced Vifgey will also allow GEO600 to remain online and
searching for gravitationalaves while the other detectors have gone offline to receive those upgrades

(3].

In recent years Craig Hogan, director of Fermilab and professor at the University of Chicago, has
put forth a theory which proposes that our universe could be a hologardthis holographic nature
may be detectable in the GEO600 datashortii KA & WK 2 f 2 3 slipgedhatGhere dda y OA LX S Q
possibility thatworld we live in is a projection from the two dimensional surface of the very edge of the
universe[4]. Just as lowing up an image will produce a grainy picture, Hogalievesthat this
projection from two dimensions tthree will leadto spacetime possessing a grainy quality
Furthermore, Hogan believes that if the universe is a three dimensional projectioreftom
dimensional surface, the resultigyaininesof spacetime will lead toobservable effects in the data
which GEO600 is collecting. He believesth&tYS 2F (KS y2AaS 4KAOK D9hcnnQ
cannot explain is, in fact, attributable todtpixelated quality of spaeme.

This report aims to describe a method which was developed to create a means of determining
the parameters of a model which yield the result closest to the data observed by GEO600. Thid metho
made use of Bayesian ansi® T2 NJ ¢ KA OK 5 &i§ aiyod gerfendl sdur@esiof réferehde), adm 8



well as a Markov chain Monte Carlo means of creating probability distributions of the parameters which
the given model was varied over. This method wseduto determine tke best parameters of a variety
of models whose subsequent fits to the observed data will be examined and compared.

1.1 Noise Projectiongnd Sources
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Given that much of what thigeport isinvolved with is working with noise projections, a brief
summary of how they arcalculatedwill be given as detailed by Joshua Smith in his 2006 pdggr,
When a noise source is identified as something which is contributing to the overall strain being
detected, a means adflentifying how much it is contributing must laentified. Thus, iflie overall
output channel is measured, its signal may be broken down into gravitational wave signals plus the sum
of all mechanical and environmental noise present. ldentifying each of those noise signals and
determining their effect on the overall outpig the target of noise projection. Initially, a transfer
function must be calculated, the transfer function is a factor which the noise sgymalltiplied bysuch
that the result is compatible with the final output signal, and with this the noise sduide KI Yy RQ&
contribution to the final output may be determined.

When calculating a transfer function, there must be injected noise over the relevant frequency
ranges, such that the noise source for which the transfer function is being calculated domireates t
output signal. This step must be taken to ensure that no transient noise influences the calculation of this
transferfunction. At this point the discrete Fourier transform is taken of both the noise signal and
output signal; this step takes the signéism the time domain into the frequency domain. After these
steps have been taken, the noise projection of the noise source onto that of the output signal may be

3



calculated. It is important to note that when these noise projections are added to creatsutin of all

the noise sources, they are added in quadrature. Thus, the sum of all noise sources whose transfer
functions have been calculated and whose effect on the output signal are explained takes the following
form (where there are i noise sources,cbadenoted by a subscriptedN

T
Cc

i 0@ Qo a G "QQQ U 0
1.2 Holographic Noise

/' Ny A3 1 23FyQa K2f23aNFLKAO y2A4aS (GKSEW&E KlFa Ada
combined efforts of Stephen Hawking and JaBekenstein led to the determination that the entropy
of a black hole is equal to one quarter of the area of its event horizon in PlanckRimjs Rev. D 78,
087501 (2008)]This result indicates that the number of microstates of a black hgmjsortional to
the area of its horizon, not the volume which it contaiAtong with others, Craigoganhas proposed
that thismay be generalized tapplydl KS Sy GANB dzy A OSNESI GKS 2@0SNItt y
LINA y Belnd dhat &) the informaon in the universe is encoded on the two dimensional surface of its
boundary, and the world which we observe and live in is a projection from this 2D edge, effectively
making our universe a holograjs).

It has been suggested that the Planck lengtthéslength at which the difference between two
locations can no longer be distinguished from one another, that is to say that at this length scale space
time becomes controlled by quantum effecad diverges from the classical notion of continuous space

time. Given that the Planck length is equa , or approximately 1.61710%, there is no way

to build any apparatus which can make measurements at this scale in order to test this notion. However,
if the universe were a hologram, attte two dimensional boundary is the location whehe Plank

length is the length at which quantum effects on sp#ioge become apparent, then this length, when
projected onto the emergent three dimensional volume, may be scaled to a size sufficieralpdang

to be detected by the interferometers dedicated to gravitational wave detection. This is the concept
which Craig Hogan has propog&d 6].

I 231 yQa K SteeMpBantéqRirid®eiminady bf §pace time will reveal itself in
guantum fluctuatiors of spacdime, and that these fluctuations will be large enough to be detected by
the gravitational wave detectors. Particularly, Hogan believes that these fluctuations will present
themselves in the data collected by GEO600 because it does not hayepeadir cavities, and is thus
designed to measure transverse position changes, which is what Hogan believes the fluctuations will
FFFSOOd LY KAa Yz2ad NBOSyd LI LISNI I 23Fy KFa OFf Odz

fluctuations lead to igqual to 1.87 10/ —, [5].



1.3 Bayesian Analysis and Markov Chain Monte Carlo

Bayesian analysisasmeans of statistical analysis that is particularly suited for instances, such as
those explored in this report, when it is desired to choosetof parameters such that a reconstructed
model best fits the actual observed data. At the most basiellere have the regular product rule found
in probability theory, which is:

r‘_] ‘l é “E“ "O h ‘l é n'?‘nl""OZ r‘_] \l é n'?’uc

Where Xand Yaretwodrd2 A GA 2y aY GKS GSNIAOFE o6FNJIYIFe 06S NBI
background conditions that X and Y depend on. Fromthiswgli2 6y Sljdzt GA2y S . F&8SaQ
(immediately belowJollows:
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denominator of the right hand side
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We then realize thatf) | €GO 1)1 £GdES0, or that the probablily of X and Y given |, is the
same as the probability of Y and X given I. We may now:write

Ni £SO 11 £Q@N0zZ /1 £GO

From here arriving at Bayes theorem is simply a matter of rearranging the above equatienslue of
this methodcan be seen if we presume that X denotes the hypothesis we wish to test and Y denotes our

observed data. We mayalie no way of knowing i é¢6&W0, K2 6 SGSNE 6S Yl & dzasS . | &
determine this probability by breaking it down into bits which may be able to determine. Overall we
have that:

Ni &@n i VOHOTP N1 QDD KB MOz /1 £@ 1 Kbi SOi

2 KSNB (KS & LiyRHaasm@cdsgayy kifice a2 €Qd §@ierm has been left ot, which
is acceptable since this term is simply a normalizing t&khen discussing Bayesian analysis the proper
names of each of the three above terms are often used, so they are listed here:

Ni @ & VOO néi o WEGEDD QN QO ®
Ni £€QERDN L MI & QWOQHW &£ OO Qé ¢
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The prior probability can be seen as atstaent of the knowledge, or lack thereof, of how likely
a hypothesis is without analyziranyobserved data. In an instance when little to nothing is known
about this prior distribution, a flat prior probability, or simply a constant number which spans the range
of the likelihood equatiomay be usedin other hstances, when more is known about the prior
probability, the prior may be chosen to reflect that knowledge. The likelihood funatitsas the
means of altering the prior to reflect the experimental values that are observed. Taken together these
two return the posterior probability, which is the understanding of the likelihood of the hypothesis given
the data that has been collected.

Another application of Bayesian Analysis is in creating an odds ratio. If there are two potential
hypotheses, kand H,, this case the current noise model for GEO600, and one containing a holographic
noise component, an odds ratio would be as follows (where {d} is the observed data set):

A1 €DSQAO N1 €@DSO fi & BSO
Nl E@sQRO Qi €@sO i € a@sO

Where the terms again have proper names, from left the right the first term is called the odds ratio, the
aS02yR A& OFffSR GKS LINA2NJ 2RRa&X FYyR (GKS GKANR Aa
be on the order ofén, there would be good support that the model requires a holographic component.
CKAE O2yOSLIi Aa FdzZNIKSNI SE[f 2NBR Ay DNIKIFY 221 yQ&

In order to findcertainposterior probability estimation, the likelihood function times the prior
probability must be integrated over all the possible aatoints.This is wherdMarkovchain Monte
Carlg shortened to MCMC henceforth, igefi made use of. A MCMC method of creating a posterior
probability will use a Markov chain to sample from gstablishedprior probability. An initial point from
the prior is selected and its likelihood value ifcoated. Using the value of thisitial point, a step is
taken and a new pat is chosen, then the likelihood value at this new point is calculated and is then
added to the integral being calculated. Another step is now taken from this new point and continuing in
this way a Markov chain is constructed. However, Makov chaircreated in this process is
constructed such that its stationary distribution is the intagd desired, resulting in the posterior
distribution of interes{8]. The exact means of the MCMC used in this report is detailed in the next
section.

2 Methods and Results

The first task which had to be completed was smoothing the GEO600 data so that it was no
longer unnecessarily spikey. As previously discussed, calibration lines are inserted into the data such
that noise projections can be successfully created. Thedwatdin lines may be seen Hgure2in the
observed strain of GEO6Qgellow curve)andthey are particularly prevalent from approximately 600 to
700HzThese lines would have interfered with calculating a proper fit to the observed strain in the
GEOG600 data since they varied immensely from the actual data, thus they had to be removed in order to
create a reasonabile fit to the strain in any of the varimdels tested.



These lines had to be removed efficiently, and thoroughly, however the smoothing process used
had to avoid removing any significant portions of data. To do this, a rolling median of the data was
calculated. A rolling median calculates tnedian ofthe data over a specified range of frequency bins.
For instance, if this range were 11, then t&oint in the rolling median would be the median of the
data from values {6 to k+5.To determine an appropriate range to calculate this mediagrpseveral
values were tested. It was found that smaller values left the data too spikey, and ultimately a value of
100frequencybins was used. A median was used so that any significant increases in the value of the
data were still reflected after smobing. After this rolling median was calculatedthreshold at which
to discard data points exceeding the threshold had to be determined. Several thresholds were
considered, values between 1.05 times the rolling median and 5 times the rolling meeliarestedas
thresholds, and 1.2 times the rolling threshold was chosen in the ginde it left significant changes of
the data intact, but removed much of the spikes which would have interfefags means that the final
data which was used in all the calations had discardedny datum which was larger than 1.2 times the
rolling median calculated over the data values at the neighboring 100 frequency bins. The final process
in this smoothing was to remove the data points between 607 to 715.5 Hz because ftowvsufficiently
smoothed by the previous proceskhe following figure shows the results of this process.

smoothed data

frequency(Hz)

Figure: This figure shows the results of the smoothing process as detailed above. The yellow curve represents the
observed strain observed byE®600, and the blue curve is the resulting smoothed curve that was henceforth used
as the observed straim GEO600. It is worth noting that no data values were altered by this process, data points
were merely discarded in the instance that they were ezoedy large.

After the data was sufficiently smoothed, the next task to be competed was geneeatirgans
of creating a simple initial model to complete the existing GEO600 noise model. The following figure
shows the existing noise model, as well asdbtial strain which GEO600 has observed
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Fgure3: Shows the current GEO600 noise budget. SUM indicates the sum of each of the noise sources, and h
indicates the actual strain observed by GEO600. Each of the other curves is an explained noise sdut@swhic
been modeled by the noise projection techniques described in 1.1.

Asshownin the figure, the sum of the explained noise sources does not match the strain
observed by GEO600, indicating that there exists substantial unexplained noise. For thepoifibs
report, only the frequencies from approximately 100 to 1000 Hz were used in the models. In this

frequency rangethe missing noise appeared to behave-r———— type fashion. Thus, the first

model which was chosen to approximate thméssing noise was a power law modeling of the
unexplained noise. The equation used was:

N rr x AL r r . \ ey, ’p‘pn
ELOWONO WO QgqEE——1 . ~ ,
L L DO 6QE OO

Initially this term was added to the SUM term taken from the data presenté&yjime 3, and the result
was compared to the observed strain, To create the sum of the explained noise and the power law
equation each source is added in quadratues is done with each explained noise soufideaus this
simple model was written as:

nNévRWDEQQA YYD




To compare thisnodel to the observed strain, the natural logarithm oBaussian likelihood distribution
was usedThe logarithm was used due to extremely small nature of the valfidse noise model, using

the logarithmic function allowed for more manageable calculations, as well as values which our means
of computing were better suited to working witithe following equation is the likelihood function

which was used, where plm is the above povesy model, h ishe strain observed by GEO600

smoothed as explained aboyvand, is the variance, which was found to be*this is its value in all
further instances of its use).

1 e o

€ GO0 Ol TOPERH 6 | a MIWQH WY ¢ ——

This likelihood was calculated at each of the data pointsarfchSUMoetween 16 and 16 Hz.
Thus to compute the overall likelihood at any given value of the power law model, the values of this
likelihood were summed over aif thesedata points. Theralues were summed becautigs is a
logarithmiclikelihood, ifa logarithmiclikelihoodwere not being usedeach of these probabilities would
be multipliedsince) | £cBdB A1 édd i éaw 8 .Thusl 1N i écfuiB I ni &
ni éaw 8 i ¢d 1T ni éaw ES

Initially, amatlab script was created to calculate the value of these likelihoods while varying the
parameters of the power law model, y and z. The value of y was varied2®to-17, and the value of
z was varied from 0.%t2.5, and in each range there were 100 values of the parameters selected to
calculate the likelihood at. Overall this evaluated the likelihood function at 10;8Q@s of the
parameters. Once these values were calculated, the maximum value of theddatlivas determined,
as well as the values of the parameters which yielded this value. The value of the power law model was
then calculated for these values of the parametarsl this was subsequently compared to the observed
strain. The figure below showtise results of this method creating a simple model which completes the
noise model of GEO60The values of the parameters which maximize the likelihood were found to be:
y=18.1010 and z=1.2828, giving a power law equation equal to:

8




Power Amplitude Spectral Density (strain/(Hz'/2)

Best fit for unmodeled noise, using gaussian distribution, (10718 1|J1IJ)/‘(fre|:11 2828)
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Figure4: This figure is the result of the initial creation of a simple model to complete the GEO600 noise Thedel.
blue curve indicates the actual strain which GEO600 has observed (after being smoothed), the green curve
indicates the sum of the explained noise (SUM), the black line is the value of the power law equation at the
parameter values which maximize the likelihood functign18.1010 and z=1.2828nd the red curve is the
resultant fit using the power law model.

After this method of choosing parameters to create the best fit was completed, the next step
was to create a method which would make use of an MCMC. Thenfide! that the MCMC program
created for and used on walse power law modelthe same as aboveg shat a comparison could be
made between the two, and the MCMC could be tested for functiondlite first step of the MCMC
program was to set up the prior distribution which the program would sample from. First the prior
ranges are set, in this case thevalues ranged froril8.6 to-18.0, the narrowing of the range allowing
for a more targeted exploration of the parameter space. The z parameter ranged from 0.9 to 1.5, again a
more narrow range to allow sampling over a more targeted arBae prior distibution was esablished
FNRY G(GKS&S Nry3aSazx GKS Nry3dS 2F F LI NFYSGESNI 6SAy3

value. In each case, the prior probability was chosepete . As discussed in

section 1.3, the pdr probability is to be multiplied by the likelihood function in order to yield the
posterior probability.

The next step in the MCMC was to establish the proposal covariancémlatthis casetiwas
decided that the parameterBad no covariancegnd this matrix was simply a diagonal matrix with the
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initial values that the MCMC would use for sampling on the diagonal. For instance, in this model this
. NE QOW@o Q 1

matrix was b n R

Q¢ "Qq uQman

sampling from these prior ranges. A common way of choosing a random vector from a multivariate

normal distributionis to use the Cholesky decomposition of the covariance matrix. The Cholesky
decomposition is a matri& such thatAA isequal to the covariance matrix of the distribution, and this
is the method that was used in this case, the Cholesky decomposition of the above proposal
decomposition was taken and then used each time a new point was sampled from the prior ranges.

.(,)Fré)m this point it is necessato have a means of

Once tle Cholesky decomposition was established the MCMC began. The first step of the MCMC
was to evaluate the likelihood function at initial values of the parameters y and z. After this was
evaluated the posterior distribution was calculated by multiplying thedue of the likelihood function
by the priorprobabilities A logarithmic Gaussian likebod was again being used, so the posterior
probability now took the form:

NED o0 QMiREDDQD QA QO ®

P g & P .. P

o &€ —— e A ET T A
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The natural logarithm of the two prior probabilities was added to natural logarithm of the likelihood
function since this is equivalent to multiplying the likelihood function by the prior probabilities and
subsequently taking the natat logarithm of the result.

From ths point, a new set of values tife two parameters was drawn from the two prior
distributions.This was done by creating a random matrix the size of the Cholesky decomposition, with
each entry in the matrix greater thaero and less than one. The Cholesky decomposition and this
matrix were then multiplied together. The entry of the resulting matrix corresponding to the y variable
was then added to the value of y that had just been used to evaluate the likelihood furetibthe
same was done for z. It is in this way that the size of the Cholesky decomposition controlled the size of
the steps that the Markov chain took as it explored the parameter sp&a@esh new parameter value
was chosen simply by adding to the praxdgarameter value a random multiple of the value of its
corresponding row in the Cholesky decompositibhus an important part of choosing the entries in the
proposal covariance matrixvhich is what determines the Cholesky decompositia¥ to choose a
appropriate scaling factor that allowed sufficiently small steps through the parameter space so that each
area was explored thoroughlyhese scaling values were chosen through some trial and error and by
ensuring that whatever was chosen allowed fouéfisient amount of exploration of the parameter
space, while simultaneously not being so large as to never converge to a value that maximizes the
posterior probability For the power law model,.005999was chosen as the scaling value for the y
parameter, and01555was chosen for the z parameter.

Once a set of new values for the parameters were chosen, it was made sure that these new
values did not fall outside the ranges of their parameters, ifonssmaalS NJ G Ky A dGa LI NI YSi
minimumor large than its maximunthen the set was rejected and a new set was chosen. Once an
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appropriate set of values was found, the likelihood function was then evaluated using these new
parameter values. The posteriorgiyability was once again calculated by adding the natural logarithm

of the prior probabilities to the new value of thi&elihood function. At this point a ratio was taken
between the new posterior probability and the previous one. If this ratio was gréage one,

signifying that the new point had a greater probability than the previous one, then this point was
acceptedand the next set of parameters could be chosen by adding a random multiple of the Cholesky
decomposition to this set of parameters. lfet ratio was less than one, then the new set of parameters
was rejectecand a new set was chosen based on the previous set.

This process was repeated 20,000 times. The first 10,000 times was known as the burn in, these
iterations were used to explore thgarameter space and arrive at the area of the parameter space
which maximized the posterior probabilities. The last 10,000 iterations were the ones which were used
in the final posterioprobabilities The set of values that each parameter took on overdberse of this
process is known as the chain of that parame€@wver the course of thigrocess a ratio of the accepted
values in the chain versus the total number of values that were tested was kept, both for the burn in and
the iterations after the burin known as the acceptance ratio of the chakor the power law model
the acceptance ratio during the burn in was 0.14, and that of the chain was 0.13. The maximum y value
was found by this method to bd8.1415, which was reasonably similarto the fre dzd Y S i K2 RQa
My dmamn® ¢KS YIFEAYdzY T @FtdzS F2dzyR 6& G(G(KAa YSiIiK2R
1.2828. The following figure shows probability density functions of the y and z parameters, and the
subsequent figure displays the valuediud y and z chainss well as the chain of the posterior
probability valuesthe figure after that shows the resuwf the model using the parameter values that
maximize the posterior probability.

Pl Prabability Density Function of y FigureS: Thefigureto the left shows

20 the probability desity functions of the
y and z parameters in the power law
model. The top left figure is the y pdf.
10 The bottom left figure is a contour plot
5 of the overall posterior probability. The
bottom right figure is the z pdf.

15

ypdf

-18.15  -1841 -18.058

¥s

Pl Probability Density Function of z
40

1.3

1.28

Z value

1.26

-18.188.168.148.1218.118.08 1.25 1.3 1.35
Y value s

12



Power Amplitude Spectral Density (strain/(Hz'/2)
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Figure6: The figure aboveshows the values whiclt, zand the posterior probability (shortened to L for likelihood),
took on over the course of the last 10,000 iterations of the MCMC. The top plot is the y chain, the middle is the z
chain, and the bottom is the posterior probability chain. As can be setireiposterior probability chain, by the

time the burn in portion of the MCMC had been completed, the values of y and z which maximized the posterior
had already been established, and the posterior probability was nearly stabilized.

Best fit using a model which varies only power law, using gaussian distribution, Input values: y =-18.1415, z = 1.2635

T
Actual Strain
Best fit with Power Law Model
10%4freq® M
Sum of explained noise

Frequency [Hz]

Figure7: Thefigureaboveis the result of the MCMC method of completing the GEO600 noise model. The blue
curve indicates the actual strain which GEO600 has observed (after being smoothed), the green curve indicates the
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Power Amplitude Spectral Density (strain/(Hz'/2)

sum of the explained noise (SUM), the black line isviiee of the power law equation at the parameter values
which maximize the likelihood function, ¥:8.1415 and z=1.2635, and the red curve is the resultant fit using the
power law model. Tisifigure should be compared tagkre 4, which was the result dhe initial method of
completing the GEO600 noise budget using the same model, the power law model.

The next model testd was one that simply brokeUM down into five of its largest components
and made no attemipto complete the noise budget (as a shortftename this model was called
brksurmoplm, for broken apart SUMith no power law modél This was done so as to have a point of
comparison for later models which would have the broken downsum as well as several other
components attempting to complete theoise budget. The first step was to determine which of the
noise projections made the largest contributions to the values of SUM. These were found to be LAN
BSAR and LAN ®11VIS, both of which are types of laser amplitude noise, shot noise, dark noise, and
SFRP. The result of this breakdown is shown below where the red curve indicates the reconstructed sum
and the blue curve indicates its actual value.

Sumy vs Model of sumy as 5 noise sources added in quadrature

Sumy
Modeled Version of sumy

frequency (Hz)

Figures8.
This model then took the form:
i Qi odeeEnaa
MAME D WAMEE i@ o QzQdi Q Qzi i Qn

Where lanb is the values of LAN BSAR and lanm is the values of LAN MIC_VIS. The coefficient in front of
each noise projection & measure of the error in each of those projections, and these are the values
whichwill be determined by the MCME&ach of these coefficients a, b, c, d, and e scale these

projections until they give the best fit to the datBhe method for this MCMC was precisely the same as
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