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Abstract: 

 
The 10 m prototype interferometer is currently being constructed at the AEI in Hannover, 

Germany. This paper discusses the details of the commissioning of the Reference Cavity 

suspension, one of many subsystems of the 10 m prototype. It was found during the course of 

the commissioning of the Reference Cavity that there is a large amount of magnetic cross talk 

between BOSEMs on the upper mass of the suspension. Transfer function measurements of 

the suspension were taken. The results showed that the magnitude of magnetic cross talk, 

along with other suspension commissioning issues, is non-negligible. Moving forward a 

correction to the control system will be created to account for the magnetic crosstalk in the 

BOSEMs. The Goal of the 10 m prototype is to test advanced techniques as well as conduct 

experiments in macroscopic quantum mechanics. 
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1  Introduction 

 

1.1 Gravitational Waves 

 

In 1916 Albert Einstein, published his Theory of General Relativity, in which he predicted 

the existence of gravitational waves. The theory states that gravitational waves are formed 

whenever there is a change in the quadruple momentum of a given mass distribution, 

[Einstien’16]. 

 

Water waves appear as ripples on the surface of water, gravitational waves are ripples 

through the fabric of space-time. However the interaction between matter and space time is so 

small that these waves are incredibly weak. Only enormous astrophysical events can produce 

gravitational waves with amplitudes where detection is feasible. These events included, 

supernova bursts, black hole convergence and some binary systems such as neutron star-black 

holes or two orbiting black holes and so on. There is an advantage to the elusiveness of 

gravitational waves. The weakly coupled nature of gravitational waves allows them to propagate 

almost completely unimpaired throughout the whole universe.  

 

Modern astrophysics utilizes electromagnetic radiation and neutrino detection to study 

the substance of our universe. However there are many astrophysical bodies where such 

methods of detection are insufficient. Black holes, for example, do not emit light, nor do they 

emit neutrinos, yet there incredible mass makes them prime targets for gravitational wave 

observation. There are also regions of space that are obscured from vision such as the center of 

our own Milky Way galaxy, where interstellar gas obscures the center from view by traditional 

means. Gravitational waves however, due to their weakly interacting nature, can easily 

permeate through the whole of our galaxy mostly undeterred. This makes them valuable 

sources of information about the inner workings of our galaxy and many other, otherwise 

inaccessible, astrophysical bodies. Gravitational wave astronomy is expected to open a 

completely new window to the universe and will deeply impact our current perception of it. 

 

 

 1.2 Gravitational Wave Detectors 

 

Detecting Gravitational waves is no small feat. The project is one of the most challenging 

and ambitious in modern physics. There are two main approaches employed in the detection of 

gravitational waves, they are; detection via resonant-mass antennas or via laser-

interferometers. This paper mainly addresses the later method of detection. The laser-

interferometer detection method provides a broad bandwidth of detectable frequencies up to a 

few kHz of high sensitivity [Goßler’68]. Currently there are 5 interferometric gravitational wave 

detectors in existence worldwide. These along with some proposed detectors included; 
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AIGO (Australian International Gravitational Wave Observatory) an Australian detector at Gingin 

[Ju’04]. This detector has an operating vacuum system with 80 m long arms. 

 

GEO (also known as GEO600), is a German-British project located in Ruthe, Germany 

[Danzmann’95]. It is based on a Michelson interferometer with arm lengths of 600m, each folded 

once to obtain and effective length of 1200m. 

 

KAGRA, is a proposed Japanese project. The detector will be located underground in the 

Kamioka mine in Kamioka-cho, Japan [Somiya,Kentaro’12]. It’s subterranean location protects it 

from a major portion of seismic noise which mostly travels on the surface of the earth’s crust. 

The project is currently planning on installing two interferometers with 3 km long arms. 

 

The LIGO (Laser Interferometer Gravitational wave Observatory) collaboration consists of two 

sites in the US, one in Livingston, Louisiana and the other in Hanford, Washington [Sigg’04]. 

The two sites both contain Michelson interferometers with 4 km arm lengths. 

 

TAMA (also known as TAMA300), is a Japanese project operating a Michelson interferometer 

located near Tokyo [Takahashi’04]. The detector has 300m long arms. 

 

Virgo, the French-Italian project is located in Cassia, Italy [Bradashia’90]. It is a Michelson 

interferometer with 3km arm lengths. 

 

LISA (Laser Interferometer Space Antenna), is the proposed space borne gravitational wave 

observatory [Vitale’20]. Once realized LISA will consist of three spacecraft arranged in a 

equilateral triangle with side lengths of roughly      km. It will consist of three coupled 

interferometers with arm lengths equivalent to the sides of the equilateral triangle. 

 

Most of these detectors are either in development or being upgraded to the next 

generation of advanced interferometric detectors. Only the GEO detector is currently operating 

in a more or less continuous observation mode. 

 

 

1.3 Interferometric Detectors  
 

Though these different projects each implement their own version of the laser 

interferometer the core of how the instrument works is the same. Most ground based laser 

interferometers used for gravitational wave detection are, in principle, Michelson interferometers 

whose mirrors are suspended as pendulums [Torrie’01]. This method of laser interferometry 

was first done by Forward [Forward’78] and Weiss [Weiss’72] in the 1970’s. 
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Figure 1 shows a schematic of an interferometer. S stands for the source of the light. M1 and M2 are the two end 

mirrors of the arms of the interferometer. M0 is the beam splitter. And L is the length of each arm which is the same, 

save for a small relative motion between the mirrors depicted as d1 and d2. The relative motion can be positive or 

negative and appears as the sum of the motion in each arm. The light is recombined and detected by the photo 

detector located at PD. 

 

The image in Figure 1 depicts an outline of a Michelson interferometer. The 

interferometer has the ability to use light to detect minute changes in distance. It does so by 

taking advantage of the superposition principle and the properties of coherent laser light. Light 

from a strong coherent laser is incident on a beam splitter. The light is partially reflected and 

partially transmitted by the beam splitter into the two arms of the interferometer. Each arm is of 

length L. The light travels down the length of the arm and reflects off the end mirrors and then 

back to the beam splitter. The light is then recombined and detected at the photo detector. The 

pattern of the recombined light will change in intensity as the relative motion of the mirrors 

varies.  

 

When a gravitational wave passes through the detector the mirrors will distort creating a 

change in the relative motion between the mirrors, which is intern detected as a change in light 

intensity at the photo detector. This allows the interferometer to be used to detect gravitational 

waves directly. 
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1.4 The 10 m Prototype 

 

In addition to the primary observatories there are additional, smaller scale, 

interferometric experiments being conducted in the field of gravitational wave research. The 10 

m Prototype (see figure 2) located at the Albert Einstein Institute, in Hannover, Germany, is an 

example of one such project, [Goßler’10]. Though the size of the interferometer limits its ability 

to detect gravitational waves, new methods and theories can be tested in the smaller 10 m 

Prototype. The advantage of the 10 m prototype is that it allows for experimentation with new 

methods and techniques for suspension and optics that might be considered too risky with the 

larger more delicate observatories. 

 

 
 
Figure 2 depicts the 10 m prototype which employs a suspension system consisting of seismically isolated tables and 

multi pendulum suspensions for the test masses. It also utilizes a high vacuum system, [Goßler’10]. 

 

The 10 m prototype aims to perform experiments at or below the Standard Quantum 

Limit (SQL). This would mean that the dominant noise source for the 10 m Prototype would be 

measurement (shot) noise and back-action (quantum radiation pressure) noise. In order for 

those noise sources to dominate the interferometer must be well isolated from seismic and 

thermal noise, by far the two largest sources of external noise limiting the sensitivity of 

interferometric detectors. In order to reach such sensitivities the 10 m prototype utilizes 

seismically isolated benches, that will be interferometrically interconnected and stabilized. The 

interferometer will also be placed within a ultra-high vacuum system. The sensitivity of the 10 m 

prototype enables it to be used for experiments in the field of macroscopic quantum mechanics.  
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2 Theory and practice of Optic Suspension 

 

2.1 Noise Sources  
 

The main challenge in detecting gravitational waves is creating a detector sensitive 

enough to observe the small amplitude signals, gravitational waves produce. The main sources 

of noise that hinder the sensitivity of ground based laser detectors are;  

 

○ Seismic noise, caused by motions of the Earth. 

○ Thermal Noise, In the mirror test masses and in their suspensions. 

○ Photon noise. 

 

Seismic noise can result from many naturally occurring phenomena. For example, ocean 

tides, vehicle traffic near the detectors, and earthquakes, are all regular sources of seismic 

noise. The test masses of the interferometric gravitational-wave detectors require isolation many 

orders of magnitude greater than this ground motion. To overcome this detectors employ 

seismically isolated tables supporting multi pendulum suspension to hold the test masses. This 

reduces the noise in the detector by many orders of magnitude, [Goßler’68].  

 

Thermal noise is caused by the random motion of the atoms of the test mass mirrors and 

their suspensions. Sources of thermal noise include; pendulum modes of the suspended test 

masses, internal modes of the test masses and violin modes of the suspension wires, among 

others. Modern detectors go to great lengths to minimize thermal noise. In addition to highly 

sophisticated suspension systems which primarily help isolate the test masses from seismic 

noise, interferometric detectors are also placed in vacuum systems. Putting the detectors into 

vacuum reduces the influence of air damping, of refractive index fluctuations and acoustic 

coupling, as well as helping to reduce thermal noise in the detector, [Goßler’10]. 

 

Photon noise, also known as photon shot noise, is caused by the variation of the number 

of photons hitting the output of the interferometric detector. There is an uncertainty associated 

with the number of photons detected at the output of the detector. It is this uncertainty that gives 

rise to shot noise, [Torrie’01]. The sensitivity of an interferometer to shot noise can be improved 

by increasing the level of input power. However the power of the laser is directly connected to 

the radiation pressure noise. Radiation pressure noise is caused by the fluctuation of the 

number of photons reflected off the surface of the test mass. As the laser power increases so 

does noise due to radiation pressure. 

 

The 10 m prototype aims to characterize Photon noise and Radiation pressure noise. In 

order to do this the prototype employs a suspension system consisting of seismically isolated 

tables and multi pendulum suspensions for the test masses. It also utilizes a high vacuum 

system. This allows the detector to operate with thermal and seismic noise greatly reduced. 

Leaving Photon noise and radiation pressure noise the dominant sources of noise in the 

detector, [Goßler’10]. 
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2.2 Optic Suspension and Seismic Isolation  
 

2.2.1 Seismic Attenuation System 

 

The 10 m prototype utilizes three seismically isolated tables placed in three tanks of the 

vacuum system. It also uses two different types of pendulum suspension to hold the optics of 

the interferometer. This multi-stage system aims to reduce the seismic motion in the optics 

below the standard quantum limit. 

 

The first stage of isolation comes from the optical tables. The optical tables are also 

referred to as the seismic attenuation system, SAS. To reduce differential motion the SAS 

platforms are inter-linked by a suspension platform interferometer, SPI.  

 

The SAS is a mechanical system on which the optical benches are installed. The system 

is fully passive, however it is equipped with sensors and actuators for additional feedback 

control. The design of the SAS is based on the design of the HAM-SAS, [Stochino’09], 

developed by the aLIGO program. 

 

The SAS provides a large magnitude of isolation. The designed isolation value of the 

system is 80 dB for vertical and 90 dB for horizontal degrees of freedom. Isolation ranges from 

very low frequencies of a few hundreds of millihertz to several hundred hertz, [Dahl’12]. Figure 3 

shows one of the three optical tables used by the 10 m prototype. 

 

 
Figure 3 is a photograph of a fully assembled AEI SAS outside of the vacuum system. The weight is about 1800 kg 

and the dimensions of the optical bench are 1.75m 1.75m, [Dahl’12]. 
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2.2.2 Optic Suspension 

 

The final stage of isolation is provided by the mirror suspensions. There are three 

different types of suspension utilized by the 10 m prototype. They are; 

 

○ Steering mirror suspensions 

○ Reference cavity mirror suspensions and 

○ The SQL interferometer mirror suspension. 

 

The steering mirror suspension is a one stage pendulum hung from steel wires. The 

steering mirrors are used to steer the beam and thus have active control and damping. 

 

The reference cavity mirror suspension provides a higher degree of seismic isolation 

than that of the steering mirrors. The mirrors will be suspended by a three stage pendulum 

system. The reference cavity also utilizes cantilever springs, at the upper most mass and at the 

point of attachment to the suspension cage, see Figure 4. These cantilever springs provide 

vertical isolation while the pendulum provides horizontal isolation. The suspension utilizes steel 

wires. Local control of the mirrors and damping of the Eigen modes is done at the upper mass, 

[Dahl’12]. Section 3 of this paper will focus on the modeling and local control of the reference 

cavity suspension. 

 

                                      
Figure 4, the image on the left depicts the core of the Reference Cavity Suspension without the surrounding 

suspension cage. It consists of three horizontal stages (pendulum), and two vertical stages (cantilever springs), 

[Westphal’11]. The image on the right is a picture of one of the suspensions for a single mirror in the 10 m prototype, 

[Cumming’12]. 

 

The SQL interferometer mirror suspension is very similar to that of the Reference cavity 

suspension. It utilizes a triple pendulum suspension as well as cantilever springs at the point of 

attachment to the suspension and at the upper most mass. Steel wires will be used to hang the 
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upper and intermediate masses. The final mass will be hung from four fused silica wires. The 

fused silica final stage lowers the suspensions thermal noise. Damping will be applied at the 

upper most mass as well as weekly at the test mass. 

   

 

2.3 Mathematical Modeling of Single and Triple pendulum 

Suspensions 

 

2.3.1 Introduction and Parameters 

 

In order to control the position of the tests masses it is important to model the motion of 

the pendulum suspension. The suspension of the 10 m prototype utilizes triple pendulum 

suspension systems. To begin we will describe the behavior of a single pendulum and then 

generalize to the triple pendulum case. The mathematical derivation can become quite complex. 

Thus an abbreviated derivation is given for the vertical degree of freedom as well as the couple 

pitch and longitudinal degrees of freedom. All other degrees of freedom are described briefly 

with limited mathematical derivations. For more rigorous derivation for the equations of motion 

of a single and triple pendulum see the thesis, Development of Suspension for the GEO 600 

Gravitational Wave Detector, written by Dr. Calum Torrie [Torrie’01]. 

 

A single pendulum is shown in Figure 6 below. In modeling this pendulum we considered 

the effects of gravity, the stretching of the wires and the geometrical properties of the system. 

Other characteristics of the system include negligible damping and that the wires act as linear 

springs obeying Hooke’s law. The mass is also assumed to be rigid.  

 

A single pendulum has six degrees of freedom, three translational, and three rotational. 

The degrees of freedom are as follows; 

 

o Longitudinal, translational motion parallel to the X-axis. 

o Side, translational motion parallel to the Y-axis. 

o Vertical, translational motion parallel to the Z-axis. 

o Roll, rotation about the X-axis. 

o Pitch, rotation about the Y-axis. 

o Yaw, rotation about the Z-axis. 

 

They are also displayed in Figure 5 for a rigid rectangular mass, [Westphal’13]. 
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Figure 5 depicts the degrees of freedom as they relate to a rigid rectangular mass. The upper mass of the 

suspensions of the 10 m prototype utilize rectangular masses connected by two wires to the suspension 

[Westphal’13]. 

 

Using Newton’s second law, we can write down the differential equations of motion for 

the single pendulum system. To do this we use the following parameters; 

 

o s = half the separation of the wires 

o l =  the length of the wire, 

o t1 = the half separation of the wires in the Y direction at the suspension point 

o t2 = the half separation of the wires in the Y direction at the mass 

o d = the distance the wires break-off above the line through the centre of mass 

o k = the spring constant of one wire 

 

 
Figure 6 depicts a rectangular mass suspended by four wires. The length of the wires is l, the angle of 

attachment with respect to the vertical is  , half the separation of the wires at the point of attachment to 

the suspension along the Y-axis is t1, half the separation of the wires at the point of attachment to the 

mass along the Y-axis is t2, and half the separation of the wires at the point of attachment to the mass 

along the X-axis is s. 
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The differential equations of motion are dependent on the degrees of freedom. Some 

degrees of freedom are independent to first order and are uncoupled from the others. This is the 

case for Vertical motion. Others, such as Longitudinal which is coupled with pitch, must be 

described with the same set of coupled differential equations. 

 

 

2.3.2 Vertical 
 

The upper mass of the 10 m prototype can be described as a single pendulum, with 

mass m, connected by two wires of length l and spring constant k. The wires are at an angle, , 

with the vertical. The tension in the wires is described by the following equation, where    is the 

change in length from the unstretched string length,   , to the suspended equilibrium length, l ; 

 

   
  

      
                 (2.1) 

 

The right hand side of figure 4 depicts the system in static equilibrium, with the mass 

hanging from the wires. 

 

A force applies a downward offset to the mass by a small amount z from the equilibrium 

position. The length of the wires and their angle from vertical are changed to l’ and  ’. Tension 

in the wire is also changed due to gravitational loading. The new tension in the wires is 

described by the following equation; 

 

 

    
  

       
                  (2.2) 

 

The motion of the system can be described by implementing Newton's second law and Hooke’s 

law. Since the wires can be described as springs we can make the following statements. 

 

By Newton’s second Law 

        .          (2.3) 

By Hooke’s law 

        .          (2.4) 

thus 

           .          (2.5) 

 

Where    is the change in the length of the wires. Using the initial tension and the 

tension after the offset we can deduce the change in length of the wires and thus describe their 

motion. This work has been done out in great detail in the thesis of Dr. Calum Torrie, [Torrie’01], 

the detailed calculation are shown there. From his work it is found that, 

 

             
  

  
 
       

 
 .        (2.6) 
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Thus the equation of motion in the vertical direction is 

 

                   
       

     
  .       (2.7) 

 

The above equation models simple harmonic motion. Due to this we can deduce that the 

vertical frequency of a single pendulum is; 

 

            
 

  
√  

       

 
 

      

     
  .       (2.8) 

 

These equations describe a single pendulum with two wires. For the case of 4 wires you replace 

the k with 2k in equation (2.7). 

 

 

2.3.3 Pitch and Longitudinal 
 

Consider a single pendulum with two wires. Rotate the mass by an angle  to the 

vertical, along the X-axis. This rotation also causes a displacement along the X-axis. Let the 

length of the wires be l and the angle of the wires from vertical be  . The angle   is defined by 

the rotation of the centre of mass. The displacement    is the motion of the centre of mass from 

it’s initial equilibrium position. The displacement    is the linear displacement of the wires at the 

point of attachment to the suspension. Both displacements   and   are along the X-axis. In this 

example the attachment points of the wires to the mass are along the axis of the centre of mass. 

Figure 7 displays these features. 

 
Figure 7 depicts a rectangular mass suspended by two wires of length l and spring constant k. The mass 

is rotated and angle  with respect to the vertical along the X-axis. The angle of the wires with respect to 

the vertical is   and the angle of the wires with respect to the axis of the centre of mass is  .The 
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displacement    is the motion of the centre of mass from it’s initial equilibrium position. The displacement 

   is the linear displacement of the wires at the point of attachment to the suspension. 

 

For small angles we can use the following approximation to find the values of   and  ; 

           
     

 
         (2.9) 

and           
     

 
.         (2.10) 

 

In the case where the attachment points of the wires to the mass are along the axis of 

the centre of mass these angles will be equal. However if the attachment point were higher or 

lower this would not be the case. It is also assumed that both wires are of the same length l. 

 

The mass tilts due to a component of the restoring force caused by the tension in the 

wires. For one of the wires the component of the restoring force is        - + ) and for the 

other wire is             . Since   and   are equal it simplifies to         and        ). The 

values   and    are the tension in each wires and are equivalent to; 

 

    
  

 
             (2.11) 

and    
  

 
    .         

 (2.12) 

 

The value   is the change in the vertical height as the mass tilts. The equation of motion 

for the two wires will depend on the Torque which is equal to the distance crossed with the 

perpendicular component of the force. This fact gives us the following equation of motion for the 

tilt for a two wire suspension; 

 

                              .       (2.13) 

 

Here   is the moment of inertia about the Y-axis. Carrying out a few substitutions we can 

simplify the above equation. Making a small angle approximation and utilizing that for small 

distances      z = s , where s is half the separation of the wires at the point of attachment to 

the mass and  is a small angle. We get the following equation; 

 

                        

 (2.14) 

 

where                         

 

The longitudinal equation of motion is  

 

             .         

 (2.15) 
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Since  is equivalent to  we can exchange them to get the following; 

 

            .         

 (2.16) 

 

Thus from equations (2.14) and (2.16) show that pitch and longitudinal motion are coupled. 

 

In the case where the point of suspension is not aligned with the centre of mass the final 

equations are not quite the same. If the  wires are attached a distance d above the center of 

mass along the Z-axis the equations are as follows; 

 

        
   

 
              

    

 
             

 (2.17) 

and           
  

 
        

   

 
 .       

 (2.18) 

 

These equations are derived in the thesis of Dr. Calum Torrie [Torrie’01]. Again it is 

demonstrated that the pitch and longitudinal degrees of freedom are coupled. 

 

 

2.3.4 Yaw 

 

For the purpose of this paper the equations of motion for the remaining degrees of 

freedom, will simply be stated bellow. It should be known that the derivations are similar to the 

ones shown above for Vertical, Pitch and Longitudinal.  

 

In the case of a single pendulum with two wires the Yaw degree of freedom is not 

coupled to any other degree of freedom. Let the mass of the pendulum be m and the rotation 

about the Z-axis be given by the angle  .  The variable t  is the distance the wire is from the 

vertical line through the centre of mass, this is equivalent to t1 and t2 shown in Figure 6 if  t1 

and t2 were equal. The equation of motion below is true in the case where the wires are 

attached along the axis of the centre of mass; 

 

         
    

 
 .         (2.19) 

 

This result varies if the wires are attached to the suspension at an angle   as depicted in Figure 

4. In this case the equation of motion for a single pendulum, hung from two wires is as follows; 

 

         
      

     
 .         (2.20) 

 

The derivation of these equations and other pendulum models can be found in the thesis of Dr. 

Calum Torrie, [Torrie’01]. 
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 2.3.5 Sideways and Roll 
 

Sideways and roll motion are derived in a similar manner as longitudinal and pitch. Just 

as is the case with longitudinal and pitch, the sideways and roll degrees of freedom are coupled. 

These degrees of freedom become even more strongly coupled when the wires are angled 

along the Y-axis or the attachment points of the wires to the mass are not along the axis of the 

centre of mass. 

 

Consider the case where the mass is suspended by two wires sloping at an angle  to 

the Z-axis, as seen in Figure 6. Where variables t1, t2 and d are defined above in section 2.3.1. 

Let the mass be displaced a distance            and rotated an angle   to the vertical, along 

the Y-axis .The equation of motion for such a system is given by the following coupled 

equations; 

 

         
      

 
                 

   
       

 
 

        

 
                           

 (2.21) 

 

and 

 

           
        

    
     

          

 
 

        

 
 

    
      

     
   

                               
         

   
       

 
 

        

 
                                  

 (2.22) 

 

For the case with four wires the k in these equations would become 2k, where k is the 

spring constant of one of the wires. For further derivation of these equations and other 

pendulum models refer to the thesis of Dr. Calum Torrie, [Torrie’01]. 

 

 

 2.3.6 Triple Pendulum System 

 

The goal of the triple pendulum suspension systems employed in ground based 

interferometers is to isolate the detector from ground motion. The triple pendulum suspension 

does so by taking advantage of intrinsic properties that pendulum systems poses, and exploiting 

them in order to reduce motion at desired frequencies. 

 

A pendulum is a simple harmonic oscillator. As such it possesses a resonant frequency 

where when driven at this frequency the amplitude of the motion of the pendulum will increase 

dramatically. This driving force, in the case of test masses in an interferometer, can be seismic 

vibrations. However if the pendulum is driven above resonance the increase in the motion of the 
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pendulum decreases by a factor of one over the frequency squared, for a single pendulum. It is 

this quality that is exploited to reduce the seismic noise in pendulum suspensions. 

 

For a single pendulum each degree of freedom has a resonant frequency and 

associated Eigen mode. The resonant frequencies for a single ideal pendulum, with length l, in 

the longitudinal degree of freedom is as follows; 

 

    
 

  
√

  

 
          (2.23) 

 

In the case of a triple pendulum suspensions you gain an additional resonances for each 

pendulum, per degree of freedom. A triple pendulum has 18 resonants, three for each degree of 

freedom. Figure 8 shows an example of the extrema of position for the three Eigen modes of the 

longitudinal degree of freedom. The masses and wire lengths reflect those of the reference 

cavity suspension in the 10 m prototype.  

 

 
Figure 8 depicts the longitudinal modes of a triple pendulum. The masses, from top to bottom, are 1050g, 

950g and 850 g. The length of the wires are, from top to bottom, 0.22m 0.20m and 0.35m. These are the 

wire lengths and masses of the reference cavity suspension for the 10 m prototype. The key difference is 

that the 10 m prototype suspension utilizes 2 wires, 4 wires and 4 wires, from top to bottom. For the 

longitudinal degree of freedom the above modes are a good approximation. 

 

The triple pendulum system gains new resonants and thus less sensitivity at and around 

those frequencies. However it achieves further noise reduction below these resonants. For each 

pendulum you gain a factor of one over the frequency squared, leaving a power of six noise 

reduction below resonants. The resonant frequencies for the longitudinal degree of freedom of a 

triple pendulum, as seen in Figure 8, are as follows.  
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The calculations for the resonance of a single and triple ideal pendulum system can be found in 

appendix B. 

 

The ideal case provides the logical defense of this method of isolation. In order to 

employ this as a practical technique in ground based interferometric detectors, more robust 

models of the system are made. The pendulum suspensions is designed in such a way that the 

resonance of the system are below the range of detected frequencies. Sections 2.3.1 through 

2.3.5 demonstrate the necessary calculations and equations for the single pendulum case. 

These calculations are generalize to model a triple pendulum system in the thesis of Dr Calum 

Torrie, [Torrie’01]. The equations of motion are not addressed in more detail in this paper but 

are employed in computer simulations which produce transfer functions and other figures for the 

Reference Cavity suspension of the 10 m prototype. Appendix A states the parameters and 

properties used in the calculation of these functions and resonants.  

 

A mathematical model for a triple pendulum system allows one to predict the motion of 

the system. This modeling is then utilized in the local controls of the suspension system in the 

form of position and velocity damping. It is particularly important for suspensions that utilize 

control at the upper most mass and not at the test mass itself. The goal of the suspension is to 

reduce motion in the test mass. In particular, in the degrees of freedom that affect the path of 

the light incident upon the mirrors most strongly, such as longitudinal motion. Sensors and 

actuators are located at the upper most mass. However it is the motion of the test mass itself 

that must be controlled. Thus the position of the test mass is controlled based on the motion and 

position of the upper most mass, using the equations of motion for the system. 
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3  Reference Cavity Suspension Commissioning 

 

 3.1 Damping and Local Control 
 

Damping and Local control is provided for the upper mass of the Reference Cavity 

Suspension. The local control is active in all six degrees of freedom. Active damping at the 

upper mass ensures that the test mass is isolated from the local control noise by the double 

pendulum below. The damping system uses six BOSEMs (Birmingham Optical Sensor and 

Electro-Magnetic actuator). Figure 9 depicts the location of the six BOSEMs, A,B,C,D,E,F, on 

the upper mass of the reference cavity. 

 

The BOSEM is a collocated sensor and actuator. The motion of the suspended mass is 

sensed by the BOSEM, whose signal is filtered, amplified and sent to the main digital control 

system. The signal is then processed, optimized and feedback through the coil-driver amplifier 

to the BOSEM coils. This actuates the suspended mass. The BOSEM senses the position of a 

flag which is attached to the upper mass via a magnet. The BOSEM itself does not come in 

contact with the suspended masses. In order to actuate on the masses, current is run through a 

coil in the BOSEM. This current applies a force to magnet which is glued to the base of the flag, 

thus moving the mass. 

 

 
Figure 9 depicts the location of the six BOSEMS A,B,C,D,E,F on the upper mass of the Reference Cavity suspension 

as well as the degrees of freedom for reference, [Westphal’13]. 

 

The placement of the BOSEMS is designed such that, a particular sets of BOSEMS can 

sense and actuate on individual degrees of freedom. Damping and control of the longitudinal 

and yaw degrees of freedom are provided by BOSEMs D and E. Damping and control of the 

vertical degree of freedom is provided by BOSEMS A,B,C. Damping and control of side and roll 
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degrees of freedom is done by the F BOSEM. Damping and control of the pitch degree of 

freedom is done using BOSEMs B and C. 

 

Careful modeling and tests must be conducted so that damping is optimized for the 

spacing of the coils, as seen in Figure 9. In the next few sections the optimization of the 

Reference Cavity suspension will be described. 

 

 

3.2 BOSEM Calibration 

 

3.2.1 BOSEM Offset Test 
 

In order to properly calibrate the BOSEMs a test of the independence of their sensing 

and actuation was conducted. The goal was to determine if there was any issue with the 

individual BOSEMs, as well as to test for any sort of cross coupling between BOSEMs. This 

also allows for testing of the separation of the degrees of freedom in actuation and sensing. 

 

The test consisted of applying a force or a momentum to each of the coils of the 

BOSEMs respectively and measuring the resulting displacement sensing from each BOSEM. A 

null measurement was taken at the beginning and end of the test as well as several times 

intermediately. It should be noted that some coils required more or less force depending on their 

sensitivity. The force applied to each BOSEM during the course of the test is listed below, in the 

order they were applied. Care was taken to ensure that the force applied did not cause the 

mass to move out of the sensing range of the BOSEMs. 

 

After applying a force the position of the flag for each BOSEM was measured and noted. 

Measurements were taken as quickly as possible, to allow for less drift in the suspension. 

Measurements were taken for every state of excitation. They were also taken before, twice 

during and after the test, where there was no actuation on any of the BOSEMs, this provided the 

null measurement.   

 

 

3.2.2 Results  
 

Individual excitations of BOSEMs were plotted versus the sensing in each BOSEM. The 

results were centered about the null measurement. The actuation of the BOSEMs was also 

transformed to describe the equivalent actuation on degrees of freedom. Plots of this are shown 

below. 

 

The sequential actuation on each BOSEM A-F, and the response to that actuation from 

the rest of the BOSEMs, is depicted in Figure 10. Damping was applied during this test. The 

offsets applied in order are A at 3mN, B at 3mN, C at 3mN, D at 1mN, E at 1mN, F at 20mN. 

 



23 of 60 

The sequential actuation on each BOSEM A-F, and the response to that actuation in the 

degrees of freedom, is depicted in Figure 11. Damping was applied during this test. The offsets 

applied in order are A at 3mN, B at 3mN, C at 3mN, D at 1mN, E at 1mN, F at 20mN. 

 

The sequential actuation in multiple BOSEMs, and the response to that actuation from 

the rest of the BOSEMs, is depicted in Figure 12. Damping was applied during this test. The 

offsets applied in order are D and E at 10mN , B at 3mN and C at -3mN, B and C at 1.5mN, A at 

3mN with B and C at 1.5mN, D at .4mN and E at -.4mN. The combination of BOSEM actuations 

have the geometric properties of also actuating on individual degrees of freedom. They have the 

following relationships; 

 

o (D+E)/2 corresponds to a motion in the Long dof. 

o (B-C)/2 corresponds to a motion in the Pitch dof. 

o (B+C)/2 should be equal to A and correspond to a motion in the Roll dof. 

o (A+(B+C)/2)/2 corresponds to a motion in the Vert dof. 

o (D-E)/2 corresponds to a motion in the Yaw dof. 

 

 

 
Figure 10 depicts the sequential actuation on each BOSEM A-F and the response to that actuation from the rest of 

the BOSEMs. 
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Figure 11 depicts the sequential actuation on each BOSEM A-F and the response to that actuation in the degrees of 

freedom. 

 

 

 
Figure 12 depicts the sequential actuation in multiple BOSEMs and the response to that actuation from the rest of the 

BOSEMs. 
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3.2.3 Discussion  
 

Much information can be interpreted from figures 10-12. To begin there are some 

obvious non-symmetries in figure 10 which become more apparent in figure 11, the degree of 

freedom separation. One of the first most glaring unexpected results can be seen in Figure 11. 

An actuation in C does not cause motion in pitch, while an actuation in B does. This is contrary 

to the expected and desired result of an equal and opposite motion in pitch due to equivalent 

actuations in C and B.  

 

This could be due to insufficient gain in the C sensor. Increasing the gain by about 1.1-

1.2 times its current value would be sufficient to match values seen in the B sensors. This 

explanation is also supported by the fact that the C-BOSEM had the most varying open light 

voltage. Although during the calibration ~1/20,000 meters per volt was corrected by the open 

light voltages of the BOSEM, this might explain the difference. Adding more gain to C would 

better match B&C when acting on A, as well as when acting on F. Furthermore the effect from 

B-actuation onto the C-readout would match the effect of C-actuation onto B-readout. In other 

words; B and C-actuation would cause opposite pitch in Figure 11. Also an F-actuation would 

cause no pitch. It could also be the case that D needs more gain. Properly increasing the gain 

on D would mean that D and E would cause the same long-movement. 

 

Another issue uncovered in this test is that an F-actuation (sideways) causes a large 

amount of motion in Yaw. It is unlikely that this is cause by a misplacement of the magnet as 

compared with D & E-actuation (90mm lever arm) the misplacement of the magnet should be 

less than a few mm (ratio: one to tens). However the pendulum reacts with about half the yaw 

movement which cannot be corrected by adjusting gains. This finding provides the first hint for 

magnetic cross coupling. 

 

Looking back to Figure 9 we can see that magnet E (long & yaw) is quite close to coil A 

(roll,vert) and F (side). The same is true for magnet D being close to coil C. The idea of 

magnetic cross coupling is supported by the following observations from Figure 10. 

 

○ A has more influence on E than on D. 

○ C has more influence on D than on E. 

○ B has much less influence on D then C has. 

○ F has more influence on E than on D. 

 

There is potential for the F (side) actuation to couple to roll in the following three ways: 

 

○ First the uppermost wires are not parallel. In that case the suspension would roll 

around the intersection point of the wires. 

○ Second pushing the mass to the side moves the center of mass. This loads one 

blade (the one at the side you are pushing to) more, which then bends down 

more. This is causing some rolling around a point below the upper mass. 

Therefore the first effect is compensated (partly). 
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○ Third a magnetic field in coil F acts on the A-magnet. Pushing F results in 

pushing A causing roll (around a point above the upper mass). 

 

Furthermore pushing on F doesn't cause exactly the opposite of pulling. This can be 

seen by comparing the solid and dashed lines in Figure 11. In particular the influence onto roll 

and yaw are different. This may mean, the movement of the upper mass with the magnets on is 

already so big, that the magnets are experiencing different magnetic field gradients (forces) or 

different directions of field line (torques). 

 

To verify whether or not the problem was due to the magnetic cross coupling theory one 

final test was conducted. Magnet D was removed and replaced by an aluminum spacer of the 

same thickness (glued with quick drying super glue, Sekundenkleber). Currents were applied to 

coils B and C. After doing so it could be seen that the long reaction was almost completely 

gone, but yet a small amount of yaw motion still remained! Roll still induced sideways motion at 

sensor F. 

 

There are steps that can be taken to further investigate this phenomenon and potentially 

correct it. The first step would be to better characterize the shadow sensor gains. There may be 

some combinations of gains that can be weighed against each other without having to rely on 

either the corrected actuation strength or the corrected shadow sensor calibrations. Another 

possible solution would be to build a new actuation matrix which takes into account magnetic 

crosstalk. The goal of this new matrix would be to calibrate all actuators so that individual 

degrees of freedom can be acted on and magnetic cross couplings can be eliminated.  

 

 

3.3 Sensing and Actuation  
 

3.3.1 Derivation of Sensing and Actuation Matrices  
 

The upper mass of the suspension of the Reference cavity is sensed and controlled 

using BOSEMs. The placement of these BOSEMs is depicted in Figure 9. In order to utilize the 

BOSEMs the sensing input must be interpreted and translated into an actuation output. To do 

this sensing and actuation matrices are derived. The sensing matrix converts the sensor signals 

into the optic’s positions and orientation. The actuation matrix converts these position signals 

into actuator output signals. The optic’s position is referenced to its Eigen modes. 

 

To determine the sensing and actuation matrices one calculates the relation between the 

sensing and actuation in the BOSEM basis to that of the degree of freedom basis. The 

calculation follows from the geometry of the upper mass. 

 

The first image in Figure 9 depicts the location of the six BOSEMs on the upper mass. 

The second image shows the axises; side, long and vert about which the three rotational 

degrees of freedom roll, pitch and yaw rotate. BOSEMs C and B are displaced +- 16 mm from 
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the side axis. BOSEMs E and D are displaced +- 90 mm from the vert axis and +-11 mm from 

the side axis. 

 

The geometry of the system makes it easier to imagine the relation between position and 

the degrees of freedom, so first the matrix that takes the degree of freedom position and 

converts that to the BOSEM sensed position is inferred. The matrix has columns (Long, Pitch, 

Side, Roll, Vert, Yaw) and rows (A, B, C, D, E, F). The units of Long, Pitch and Side are meters, 

while Pitch, Roll and Yaw are in radians per meter. 

 

Imagine the upper mass is displaced in the Long degree of freedom, if there is only 

motion in long you would expect to sense this equally in the D and E BOSEMs and to see no 

change in the other BOSEMs. This is represented in the first column of the sensing matrix that 

takes degrees of freedom to BOSEMs shown below. The second column represents a motion in 

the Pitch degree of freedom. If the mass only rotates in pitch you would expect to see this in 

BOSEMs B,C,D and E. The amount of displacement sensed in B should be equal and opposite 

of that sensed in C. The same is true in the case for the D and E BOSEMs. The amount of 

motion is proportional to the lever arm of the rotation. The distance from the side axis of B and 

C is 16 mm thus the sensing in B and C are plus and minus 0.016m. The derivation of the other 

columns is done using the same reasoning utilized to derive Long and Pitch. The full matrix that 

takes the sensed position of the BOSEMs and converts that to the Degree of freedom basis is 

shown below. 

 

Sensing_DOFtoBOSEM = 

 

 
 

The above matrix is then inverted to find the sensing matrix, which takes BOSEM 

sensing to degree of freedom sensing. 

 

To derive the Actuation matrix a similar approach is taken. Due to the geometry of the 

system it’s easier to start with an actuation in the BOSEMs and then infer what the resulting 

motion would be in the degrees of freedom. This matrix will be the inverse of the actuation 

matrix. The matrix has columns (A, B, C, D, E, F) and rows (Long, Pitch, Side, Roll, Vert, Yaw). 

 

Imagine the upper mass is actuated on with equal force and direction with the D and E 

BOSEMs. Due to the geometry of the upper mass and the location of the BOSEMs you would 

expect motion in only the longitudinal degree of freedom. Thus the first row, which corresponds 

to an actuation in Long, has 1’s in the D and E columns. The sixth row corresponds to an 

actuation only in the Yaw degree of freedom. If you actuated on D and E equally and oppositely 
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you would expect the mass to rotate in the Yaw degree of freedom. The magnitude of this 

actuation is multiplied by the lever arm of the force applied. The lever arm of the D and E 

BOSEMs about the vertical axis is 0.09 m. The derivation of the other rows is done using the 

same reasoning utilized to derive Long and Yaw. The full matrix that takes the actuation of the 

BOSEMs and converts that to the Degree of freedom basis is shown below. 

 

Actuation_BOSEMtoDOF = 

 

 
 

The above matrix is then inverted to find the actuation matrix, which takes degree of 

freedom actuation to BOSEM actuation. 

 

 

3.3.2 Results 

 

The Sensing_DOFtoBOSEM and Actuation_BOSEMtoDOF matrices are then inverted to 

find the final sensing and actuation matrices. 

 

The sensing matrix takes BOSEM sensing to degree of freedom sensing. It has columns 

(A,B,C,D,E,F) and rows (Long, Pitch, Side, Roll, Vert, Yaw). 

 

inv(Sensing_DOFtoBOSEM) =  

Sensing = 

 

 
 

 

 

The actuation matrix takes degree of freedom actuation to BOSEM actuation. It has columns 

(Long, Pitch, Side, Roll, Vert, Yaw) and rows (A, B, C, D, E, F). 
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inv(Actuation_BOSEMtoDOF) = 

Actuation =  

 

 
 

 

The above sensing and actuation matrices are currently used as part of the control and 

damping system for the Reference Cavity suspension. 

 

 

 3.4 Reference Cavity Suspension Simulation 

 

 3.4.1 Transfer Function Simulation 

 

The next step in commissioning the reference cavity suspension is to model the state 

space and to produce transfer functions. This is done using a matlab Simulink script, written by 

Bob Taylor. The matlab model enables the behavior of the Reference cavity suspension to be 

simulated. The transfer functions produced give a mathematical representation, in terms of time 

frequencies, of the relation between the input and output of the system. In the case of the 

Reference Cavity suspension the input is the BOSEM actuation and the output is the BOSEM 

sensing. A triple pendulum system with small motion can also be treated as a linear time-

invariant system, which is necessary in order to be able to create a transfer function for the 

system. 

 

It should be noted that the frequency range was chosen to fit the measurement, and that 

not all features are shown. Also the lever arms were removed from the Simulink model as the 

suspensions angular degrees of freedom are already calibrated in radians and newton meters. 
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3.4.2 Experimental Procedure 

 

For the sake of brevity only the transfer function from roll and sideways motion will be 

explain in this section. However the same process applies for all coupled and non-coupled 

degrees of freedom and the results of all the simulations can be found in the results section. 

 

An input signal is injected into the upper mass roll-force/torque input (coil actuator) r-LC-

1. The signal is frequency dependently attenuated by the roll loop. Its strength is measured by 

the readout, displayed in Figure 13. The position of the upper mass in sideways (y1) is 

measured with another output. 

 

 
Figure 13 depicts the readout display of the Simulink model used for the Reference Cavity Suspension. It shows 

where the input signal is injected into the upper mass roll-force/torque input (coil actuator) r-LC-1. It also shows 

where the signal strength is measured. The position of the upper mass in sideways (y1) is measured with another 

output depicted above,[Westphal’13]. 

 

The system is exactly linearized and the results taken from the Simulink workspace to 

the matlab workspace for further processing. The results are then accessed in the matlab main 

window as two state space systems, labeled as linsys with linsys(1) being the first state space 

and linsys(2) being the second. There is only a single input and a single output per state space 

system.  

 

Once the state space system has been created the transfer function is then generated. 

The desired outcome is to know the transfer function from output 1 to output 2. By dividing the 

transfer functions output1/input1 and output2/input1 one gets output2/output1. This is then 

plotted. The order one divides (2/1 or 1/2) seems to be quite arbitrary and should be tuned to 

get a transfer function decreasing towards higher frequencies 
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3.4.3 Results  
 

Below are the transfer functions produced by the Simulink model as well as a list of the 

peak frequencies for each plot. The degrees of freedom Long and Pitch, as well as Side and 

Roll, are strongly coupled due to the geometry of the system. Thus transfer functions between 

those degrees of freedom are also taken. More discussion will be had on the results from this 

simulation later on in this paper. They will be compared with the transfer functions measured 

from the actually suspension. 

 

 

From the simulation the resonant frequencies are as follows; 

 

Longitudinal  

                                        

 

Pitch 

                                           

 

Side 

                                           

 

Roll 

                            

 

Vertical: 

                              

  

Yaw: 
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Figure 14 depicts the transfer function simulation from long to long. The resonant frequencies are 

            ,              and             . 

 

 
Figure 15 depicts the transfer function simulation from long to pitch. These two degrees of freedom are strongly 

coupled due to the geometry of the pendulum system. 
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Figure 16 depicts the transfer function simulation from long to long. The resonant frequencies are 

             ,              and               . 

 

 
Figure 17 depicts the transfer function simulation from pitch to long. These two degrees of freedom are strongly 

coupled due to the geometry of the pendulum system. 
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Figure 18 depicts the transfer function simulation from long to long. The resonant frequencies are 

             ,               and              . 

 

 
Figure 19 depicts the transfer function simulation from side to roll. These two degrees of freedom are strongly 

coupled due to the geometry of the pendulum system. 
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Figure 20 depicts the transfer function simulation from long to long. The resonant frequencies are 

             and              . 

 

 
Figure 21 depicts the transfer function simulation from roll to side. These two degrees of freedom are strongly 

coupled due to the geometry of the pendulum system. 
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Figure 22 depicts the transfer function simulation from long to long. The resonant frequencies are 

              and              . 

 

 
Figure 23 depicts the transfer function simulation from long to long. The resonant frequencies are 

             ,               and             . 
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 3.5 Reference Cavity Suspension Tests 

 

3.5.1 Transfer function 

 

The next step in commissioning the reference cavity suspension is to measure the 

transfer functions of the suspension. This is done using the Control and Data System (CDS). 

Using the CDS all 36 transfer functions between the suspension actuators and sensors can be 

measured. The results section for this test displays six transfer function plots one for each 

excitations in the degrees of freedom. Just as in the simulated model, the transfer functions 

produced give a mathematical representation, in terms of time frequencies, of the relation 

between the input and output of the system.  

 

The CDS digitizes and collects the data from the sensors, controlling the suspension. 

The CDS used by the 10 m prototype was developed by scientists at the LIGO sites. It provides 

access to all data collected as well as time-stamping the data with high accuracy for later 

analysis. The CDS also protects the suspension by avoiding damage from hazardous control 

signals. 

 

 

 

3.5.2 Experimental Procedure 

 

For the sake of brevity only the general manner in which transfer function were 

measured will be explain in this section. However the same process applies for all coupled and 

non-coupled degrees of freedom and the results of all the measurement can be found in the 

results section. 

 

To begin a signal was injected into the upper mass input (coil actuators). The type of 

input signal used was a series of swept sines in the frequency range of 0.01Hz to 20 Hz. Figure 

24 shows the system interface for measurements. To take the measurement, six measurement 

channels are selected, these measurement channels correspond to the sensing of the six 

degrees of freedom. For each test one excitation channel is selected, this corresponds to the 

input of the degree of freedom whose transfer functions are being measured. Once started the 

test runs overnight. Allowing the test to run overnight assures a more constant temperature as 

well as fewer disturbances to the suspension. 

 

The strength of the input was chosen in such a way as to insure coherence between the 

measurement and the output, without over exciting the system. The strength of the input is 

frequency dependent due to the fact that at higher frequencies, and frequencies near 

resonance, the motion of the suspension is more sensitive to the input signal. 

 

The excitation was measured by the BOSEM sensors and transformed into the degree 

of freedom basis as described in section 3.3. For each degree of freedom the transfer function 
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for sensing over excitation was plotted. In addition, for each excitation the transfer function of 

the sensing for all other degrees of freedom is also plotted. 

 

 
Figure 24 depicts the interface used to measure transfer functions of the reference cavity suspension. Six 

measurement channels are selected, these measurement channels correspond to the sensing of the six degrees of 

freedom. For each test one excitation channel is selected this corresponds to the degree of freedom whose transfer 

functions are being measured. The type of input signal used is a swept sine. The frequencies range is 0.01 Hz to 20 

Hz. 

 

 

3.5.3 Results  
 

Below are the transfer functions measured from the reference cavity suspension as well 

as a list of the peak frequencies for each plot. The results from this test are compared to the 

simulated transfer functions in the discussion portion of this section. 

 

From the measurement the resonant frequencies are as follows; 

 

Longitudinal  

                                                                  ,  

                                               

 

Pitch 

                                                                    

                                                  

 

Side 

                                                                    

                        

 

Roll 
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Vertical: 

                                                                       

                          

  

Yaw: 

                                                                        

                                                

 

 

 
Figure 25 depicts the transfer function simulation from long to long. The resonant frequencies are 

                     ,                     ,                        ,                       , and 

                      . 
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Figure 26 depicts the transfer function simulation from Pitch to Pitch. The resonant frequencies are 

                      ,                       ,                                               ,     

                    . 

 
Figure 27 depicts the transfer function simulation from side to side. The resonant frequencies are 

                      ,                       ,                         and                       . 
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Figure 28 depicts the transfer function simulation from roll to roll. The resonant frequencies are 

                  ,                      ,                       ,                           and     

                 . 

 
Figure 29 depicts the transfer function simulation from vert to vert. The resonant frequencies are  

                     ,                         ,                        ,                        . 
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Figure 30 depicts the transfer function simulation from yaw to yaw. The resonant frequencies are 

                       ,                        ,                                                   and 

                     . 

 

3.5.4 Discussion  
 

Looking at figures 25-30 it’s clear that the measured transfer functions are not of high 

quality. For example compare figure 14, the simulation of the longitudinal transfer function, and 

figure 25 the measured transfer function of longitudinal. The simulation depicts three distinct 

resonances while the measured transfer function has five. The poor quality is even more 

pronounced in figure 26, the measured transfer function of pitch. The figure displays several 

broad peaks as opposed to the sharp resonances found in the simulation. These sorts of 

features are apparent in all of the measured transfer functions. It is also more often the case 

that the resonance for the simulated transfer functions and the measured are not the same. In 

general the simulated transfer functions do not match the measured.  

 

There are a great number of possible factors that could be contributing to this 

disagreement between the measured and simulated transfer functions. They included the 

following; 

 

○ Incorrect Matlab Model 

○ Damping of Resonants 

○ Magnetic Cross talk between BOSEMs 

○ Issues with the BOSEM sensing 

○ Issues with the BOSEM actuation 
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Extra mass was added to the upper mass of the reference cavity suspension in order to 

make it more stable during the commissioning. This along with other parameters are not 

accounted for in the simulated model. This disparity between the parameters used by the 

Matlab model and the actual suspension may account for the non-agreement of the resonant 

frequencies. 

 

Damping of the upper mass is on during the measurement. This may account for some 

of the broader resonants. As the upper mass rings up the local damping kicks in and you 

measure a less defined peak in the transfer function. 

 

It was shown in section 3.2.3 that there is Magnetic Cross talk between BOSEMs on the 

upper mass. This magnetic crosstalk is causing coupling between different degrees of freedom. 

This coupling may be the source of the additional resonances as an excitation in one degree of 

freedom may excite another due to the magnetic cross couplings. This phenomenon may 

explain the additional resonances in the measured transfer functions. Unfortunately this 

coupling of the BOSEMs is not well understood and it is not clear from the figures which 

degrees of freedom are effecting the transfer functions of the others. 

 

It was also found in section 3.2 that there were some issue with the sensor gain of the 

BOSEMs, this would affect what values are measured and produce further coupling of the 

degrees of freedom. The BOSEM sensing is used to deduce the BOSEM actuation, issues with 

the sensing cast a shadow on the reliability of the actuation. 

 

All these factors plus possible unknown sources cause the quality of the measured 

transfer functions to be poor. Though the results are less than desirable there are steps that can 

be taken to improve the measurement and ultimately produce transfer functions that are 

accurately modeled and known. 

 

The commissioning of the reference cavity suspension is ongoing. Further tests 

measuring the motion of the mass without using the BOSEM sensing to characterize the 

BOSEM actuation are currently be conducted. Once the BOSEM actuation is known future test 

will use this to characterize the BOSEM sensing. The Matlab script will be refined and 

parameters corrected. Finally a correction matrix will be created to account for the magnetic 

crosstalk in BOSEMs. Once these steps have been implemented the transfer functions will be 

both simulated and measured again for further comparison. 
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4  Conclusion 

 

4.1 The 10 m Prototype Commissioning, Moving Forward 

 

This report presents the work done modeling and testing the reference cavity 

suspension for the 10 m prototype detector at the Albert Einstein Institute, Hannover, Germany. 

 

The 10 m prototype is designed to perform experiments at or below the Standard 

Quantum Limit. In order for the interferometer to operate as such levels of sensitivity it must be 

isolated from seismic and thermal noise. In order to reach the desired sensitivities the 10 m 

prototype utilizes seismically isolated benches that will be interferometrically interconnected and 

stabilized. The interferometer will be placed within a ultra-high vacuum system. It also utilizes 

multi pendulum suspensions with cantilever springs. The sensitivity of the 10 m prototype 

enables it to be used for experiments in the field of macroscopic quantum mechanics.  

 

The reference cavity suspension of the 10 m prototype is one of several subsystems. 

The triple pendulum system utilized by the reference cavity suspension incorporates two stages 

of cantilever springs, the design effective isolates the test masses from seismic motion. A 

detailed dynamical model for a triple pendulum suspension was described in this report. The 

model can be used to investigate the mode frequencies, transfer functions or impulse response 

for all degrees of freedom, among other things. This is essential for the design of a well damped 

triple pendulum with minimal coupling between modes. 

 

Experiments on the reference cavity suspension are described in this report. The 

BOSEM actuation and sensing was tested and magnetic cross talk between the BOSEMs was 

found. The transfer functions of the suspension were modeled using matlab and the results 

were compared to the measurements of the transfer functions of the suspension. It was found 

that the measured and modeled transfer functions did not agree. The primary reasons for this 

disagreement are magnetic cross talk between BOSEMs, incorrect parameters in the Matlab 

model, and poor characterization of the BOSEM sensing and actuation. 

 

Currently the commissioning of the 10 m prototype is ongoing. Further tests 

characterizing the reference cavity suspension are being conducted. In addition to the reference 

cavity progress in other subsystems is being made and the commissioning of the prototype is 

making progress. The Vacuum system is installed and working. Two of the three tables, part of 

the AEI SAS seismic Isolation, are installed and working. The advanced LIGO 35 W laser is 

currently coupled into the vacuum and is installed and functioning. The suspension Platform 

interferometer has been installed for one degree of freedom. In the near future a single arm test 

will be conducted for the 10 m prototype, with the goal of learning to cope with the marginal 

stability the instrument operates with. Work towards the goal of a fully realized 10 m prototype 

operating at the SQL is making headway. The 10 m prototype is on track to conduct 

experiments at or below the standard quantum limit. 
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Appendix A. Simulink Model Parameters  

 

A1. Script Title: global_constants.m 

 

Author: Bob Taylor 

Date last modified: 05/08/09 

 

This script generates a global variable "constants", where sub-variables represent categories of 

constant. For example; constants.fundamental, constants.optical, constants.material etc; and 

sub-sub variables represent appropriate quantities. Examples of sub-sub variables include; 

constants.fundamental.h = 6.63* 10^-34. 

 

More specific pendulum parameters are stored in a pend global variable, generated by 

build_pend.m.  

 

GLOBAL CONSTANTS 

 

FUNDAMENTAL   

 

constants.fundamental.e0 = 8.8541878176e-12;              F/m; Permittivity of Free 

Space 

constants.fundamental.hbar = 1.054572e-34;                J-s; (Plancks constant)/(2*pi) 

constants.fundamental.c  = 2.99792458e8;                 m/s;Speed of light in Vacuum 

constants.fundamental.G  = 6.67259e-11;                  m^3/Kg/s^2; Grav. Constant 

constants.fundamental.kB  = 1.380658e-23;                J/K; Boltzman Constant 

constants.fundamental.h = constants.fundamental.hbar*2*pi;       J-s; Plancks constant 

constants.fundamental.R = 8.31447215;                     J/(K*mol); Gas Constant 

constants.fundamental.g = 9.81;                            m/s^2; grav. acceleration  

 

INFRASTRUCTURE  

 

constants.infrastructure.temp = 273.15 + 20;                       Room temperature in the lab 

constants.infrastructure.fs = 16384;                                      Sampling frequency (Hz) 

constants.infrastructure.length = 11.65;               meters 

constants.infrastructure.residualGas.pressure = 4.0e-7;        Pa 

constants.infrastructure.residualGas.mass = 3.34765e-27;        kg; 

constants.infrastructure.residualGas.polarizability = 7.81917*10^-31;   m^3;  

 

 

LASER 

 

constants.laser.wavelength = 1.064e-6;                     Laser wavelength 

constants.laser.inputPower = 30;                           Input power 
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OPTICS 

 

constants.optics.loss = 37.5e-6;      Typical average per mirror 

power loss 

constants.optics.PDefficiency = 0.9;      Photodetector efficiency  

 

SEISMIC 

 

constants.seismic.kneeFrequency = 5;                     Seismic roll-off frequency 

constants.seismic.baseLevel = 1e-7;                      Value in m/rt(Hz) at DC 

constants.seismic.preisol.attenuationH = 70;            Attenuation from pre isolation, in dB, in h  

direction 

constants.seismic.preisol.peakfreqH = 0.1;              Resonant peak of preisol system in h 

constants.seismic.preisol.peakQH = 8;                    Q of this peak 

constants.seismic.preisol.attenuationV = 60;            Attenuation from preisolation, in dB, in v  

direction 

constants.seismic.preisol.peakfreqV = 0.2;              Resonant peak of preisol system in v 

constants.seismic.preisol.peakQV = 8;                    Q of this peak 

 

MATERIALS 

 

Silica (bulk) 

constants.materials.silica.rho = 2.2e3;              kg/m^3; 

constants.materials.silica.C = 772;                J/kg/K;    

constants.materials.silica.k = 1.38;               W/m/K, thermal conductivity 

constants.materials.silica.alpha  = 3.9e-7;            1/K; 

constants.materials.silica.dlnYdT = 1.52e-4;           (1/K), dlnY/dT  

constants.materials.silica.phi = 4.1e-10;          

constants.materials.silica.Y = 7.2e10;             Pa; Youngs Modulus 

constants.materials.silica.dissdepth = 1.5e-2;  

constants.materials.silica.sigma  = 0.167;             Poisson ratio  

constants.materials.silica.Cv = 1.6412e6;          Crooks et al, Fejer et al  (Cv=  

rho*C) 

constants.materials.silica.n = 1.45;                Refractive index 

constants.materials.silica.c2 = 7.6e-12;            Coeff of freq depend. term 

for 

bulk mechanical loss,  

7.15e-12 for Sup2 

constants.materials.silica.mechanicalLossExponent=0.77;    Exponent for freq  

dependence of silica loss, 

0.822 for Sup2  

 

Silica (coating) 
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constants.materials.silica.coating.alpha  = 5.1e-7;         

 constants.materials.silica.coating.beta = 8e-6;             dn/dT 

constants.materials.silica.coating.k = constants.materials.silica.k;       Thermal conductivity  

constants.materials.silica.coating.phi = 4.0e-5;            coating loss 

 

Tantala (coating) 

constants.materials.tantala.coating.Y = 140e9; 

constants.materials.tantala.coating.sigma  = 0.23;  

constants.materials.tantala.coating.Cv = 2.1e6;         

 constants.materials.tantala.coating.alpha  = 3.6e-6;        

 constants.materials.tantala.coating.beta  = 1.4e-5;        

 constants.materials.tantala.coating.k = 33;             

 constants.materials.tantala.coating.phi = 2.3e-4;  

constants.materials.tantala.coating.n = 2.06539; 

 

C70 Steel 

constants.materials.C70Steel.Rho =  7800; 

constants.materials.C70Steel.C =  486; 

constants.materials.C70Steel.k =  49; 

constants.materials.C70Steel.Alpha = 12e-6; 

constants.materials.C70Steel.dlnYdT  = -2.5e-4; 

constants.materials.C70Steel.Phi =  2e-4; 

constants.materials.C70Steel.Y = 212e9;            

constants.materials.C70steel.breakingStress = 2.9e9;    

 

Tungsten / Wolfram 

constants.materials.tungsten.Rho  =  19300; 

constants.materials.tungsten.C  =  134; 

constants.materials.tungsten.k  =  163.3; 

constants.materials.tungsten.Alpha =  4.4e-6; 

constants.materials.tungsten.dlnYdT = -9.64e-5;       

 constants.materials.tungsten.Phi  = 1/2e5; 

constants.materials.tungsten.Phi = 1/1e4;           

constants.materials.tungsten.Y = 400e9;       

constants.materials.tungsten.breakingStress = 3.7e9;         

constants.materials.tungsten.sigma = 0.28;         

 

California Spring Steel 

constants.materials.californiaSpringSteel.Y = 2.2e11;        

 

Marval 18 Maraging Steel 

constants.materials.maragingSteel.Rho = 8000;            Assumes annealed 

constants.materials.maragingSteel.C = 460; 

constants.materials.maragingSteel.k  = 20;  
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constants.materials.maragingSteel.Alpha  = 11e-6; 

constants.materials.maragingSteel.dlnYdT  = 0; 

constants.materials.maragingSteel.Phi  = 1e-4; 

constants.materials.maragingSteel.Y = 186e9;         standard assumption for blades 

constants.materials.maragingSteel.sigma = 0.3;          Assumes annealed 

 

Stainless steel grade 302 

constants.materials.Steel302.Y = 1.65e11; 

 

Stainless steel grade 316                                      

contains more carbon (~0.8%) than regular 302, is harder etc 

constants.materials.Steel316.Y = 1.93e11; 

 

Aluminium 

constants.materials.aluminium.rho = 2700; 

 

 

A2. Script Title: build_pend.m 

 

Author: Bob Taylor 

Date last modified: 05/08/09 

 

More specific pendulum parameters are stored in a pend global variable, generated by 

build_pend.m.  

 

PENDULUM  

 

UPPER MASS 

pend.m1_parameters = 'inventor calculated'; 

pend.material1 = 'stainless steel'; 

pend.m1 = 0.995; 

pend.I1x = 3.206664e-4;     

pend.I1y = 6.34485e-4;       

pend.I1z = 2.976341e-4;      

 

INTERMEDIATE MASS 

pend.m2_parameters = 'inventor calculated'; 

pend.material2 = 'aluminium cylinder with central hole'; 

pend.m2 = 0.873; 

pend.I2x = 1.328552e-3;      

pend.I2y = 8.17635e-4;     

pend.I2z = 8.10443e-4;       

 

TEST MASS 
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pend.m3_parameters = 'inventor calculated'; 

pend.material3 = 'silica'; 

pend.m3 = 0.846; 

pend.I3x = 1.050091e-3; 

pend.I3y = 6.98076e-4; 

pend.I3z = 7.00937e-4; 

pend.tr = 99.6e-3 / 2; 

 

SUSPENSION ELEMENTS 

pend.l1 = 222.8e-3; %0.22;     upper wire length 

pend.l2 = 200.8e-3; %0.20;           intermediate wire length 

pend.l3 = 350.01e-3;    %0.35;    lower wire length 

 

pend.nw1 = 2;       number of wires per stage (2 or 4) 

pend.nw2 = 4; 

pend.nw3 = 4; 

 

pend.r1 = 76.2e-6;           radius of upper wire 

pend.r2 = 50.8e-6;           radius of intermediate wire 

pend.r3 = 27.6e-6;           radius of lower wire 

pend.r3_parameters = 'C70 Steel Wires'; 

  

pend.Y1 = constants.materials.C70Steel.Y; 

pend.Y2 = pend.Y1; 

pend.Y3 = pend.Y1; 

pend.Y3_parameters = 'C70 Steel Wires'; 

 

BLADES  

pend.nub = 2;                         number of upper blades 

pend.nlb = 2;                         number of lower blades 

 

TOP BLADES 

pend.mntb1 = (pend.m1 + pend.m2 + pend.m3)/pend.nub;      total mass per blade 

pend.mnb1  = pend.m1/pend.nub;                              uncoupled mass per blade  

pend.blade1.parameters = 'matlab calculated';           

pend.blade1.l = 0.18; 

pend.blade1.t = 0.8e-3; 

pend.blade1.root = 3.5e-2; 

pend.blade1.tip = 0.8e-2; 

UPPER BLADES 

pend.mntb2 = (pend.m2 + pend.m3)/pend.nlb;               total per blade 

pend.mnb2  = pend.m2/pend.nlb;                            uncoupled mass per blade 

pend.blade2.parameters = 'matlab calculated';            

pend.blade2.l = 0.12; 
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pend.blade2.t = 0.8e-3; 

pend.blade2.root = 1.8e-2; 

pend.blade2.tip = 0.42e-2; 

       

X-DIRECTION SEPARATION 

pend.su = 0;                 1/2 separation of upper wires 

pend.si = 4.25e-3;            1/2 separation of intermediate wires 

pend.sl = 3e-3;             1/2 separation of lower wires  

 

Y-DIRECTION SEPARATION 

pend.n0 = 40e-3/ 2;           1/2 separation of upper wires at  

blades 

pend.n1 = 0.1;               1/2 separation of upper wires at  

upper mass 

pend.n2 = -((pend.uy) - (2*(pend.blade2.l + 2e-2)))/2; 1/2 separation of intermediate wires  

at upper mass 

pend.n3 = pend.ir-0.0035+0.005;    1/2 separation of intermediate wires  

at intermediate mass 

pend.n4 = pend.tr-0.0035+0.005;    1/2 separation of lower wires at  

intermediate mass 

pend.n5 = pend.tr-0.0035+0.005;    1/2 separation of lower wires at test  

mass  

pend.n1 = 55e-3; 

pend.n2 = 38.287e-3; 

pend.n3 = 56.3e-3; 

pend.n4 = 51.3e-3; 

pend.n5 = 53.8e-3; 

 

D VALUES (geometric) 

pend.d0 = 0.072e-3;    pend.d0geo = pend.d0; 

pend.d1 = 1.128e-3;    pend.d1geo = pend.d1; 

pend.d2 = 1e-3;    pend.d2geo = pend.d2; 

pend.d3 = 1e-3;    pend.d3geo = pend.d3; 

pend.d4 = 1e-3;    pend.d4geo = pend.d4; 
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Appendix B. Single, Double, and Triple Pendulum 

Calculations 
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Below are the calculation of the resonant frequencies for single, double  and triple pendulum. 

Wolfram Alpha was used to diagonalize matrices. The following small angle approximations 

were used in the calculations; 

 

       and 

  
  

 
. 

 

Single pendulum 

 

The motion of a pendulum at small angles can be described as a simple harmonic oscillator to 

first order. Thus Hooke’s Law for a spring can be used to describe the motion. 

 

By Newton's Second Law 

          . 

By Hooke’s Law 

      . 

By Trigonometry (see first figure at beginning of appendix B) 

            . 

Thus 

       
  

 
 . 

 

The Solution to the Differential Equation is 

 

    
 √

  

 
 
. 

 

The Resonant Frequency is 

  

    
 

  
√

  

 
. 
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Double Pendulum 

 

Referring to the second figure at the beginning of Appendix B, and the calculations for the single 

pendulum, the following equations for the motion of each mass can be inferred; 

 

                        and 

                  . 

 

 

 

These equations can be written as a 2 by 2 matrix. For ease of computation of the matrix the 

following parameters are used; 

 

      ,       ,      , and       . 

 

Below is the Matrix derived from the equation of motion along with it’s diagonalization; 

 

 
 

 

To more clearly display the features and resonant frequencies for the double pendulum, below 

is show the case where; 

 

      and      . 
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The eigenvalues of the original matrix are the diagonals of the J matrix 

and 

 
 

 

The Resonant Frequencies are the square root of the negative of the eigenvalues divided by 

two pi; 

 

    
 

  
√

        

 
   

and 

    
 

  
√

         

 
. 
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Triple Pendulum 

 

Referring to the third figure at the beginning of Appendix B, and the calculations for the single 

pendulum, the following equations for the motion of each mass can be inferred; 

 

 

                       , 

                             and 

                  . 

 

These equations can be written as a 2 by 2 matrix. For ease of computation of the matrix the 

following parameters are used; 

 

      ,       ,      , 

     ,      , and      . 

 

The Matrix takes the form; 

 

. 

 

To more clearly display the features and resonant frequencies for the triple pendulum, below is 

show the case where; 

 

         and         . 
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For the case of the triple Pendulum we inserting the values for Reference Cavity Suspension 

into our matrix to derive the resonant frequencies for the longitudinal degree of freedom. The 

parameters are listed below. Using the principle derived for the single pendulum that;  

 

  
  

 
. 

 

The parameters are; 

 

          

          

          

                 

                

                

    
   

  
          

     
   

  
          

     
   

  
         . 
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The matrix takes the form; 

  

 
 

Diagonalizing the matrix gives the following result; 

 

 
 

The eigenvalues of the original matrix are the diagonals of the J matrix 

 

 

 
and 

 
 

The Resonant Frequencies are the square root of the negative of the eigenvalues divided by 

two pi; 

 

    
 

  
√                  

    
 

  
√                  

and 

    
 

  
√                 . 


