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Abstract

The project focused on finding estimates of thermal and seismic noise for silicon suspension

systems at cryogenic temperatures. The motive of this study is due to the cryogenic upgrades

planned for the 10m interferometer at the University of Glasgow. These calculations are the first

step in the design of the 10m upgrades. A plot was successfully created using Python (Figure. 4) for

the thermal displacement noise of a simplified mass on a spring/pendulum system. Unfortunately,

the seismic noise estimates were not completed due to lack of time in a 10-week program. The

steps on finding the seismic noise estimate are shown in the ”future work” section. The Python

code was then passed on to my mentor, Dr. Giles Hammond, to continue to project.
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I. INTRODUCTION

This summer I worked with Dr. Giles Hammond from the University of Glasgow on

a project dedicated to estimating the thermal and seismic noise of multi-stage suspension

systems for gravitational wave detectors. The motivation for my project is due to the

cryogenic upgrades planned for the 10m interferometer located at the University of Glasgow.

Specifically, these upgrades stem from the fact that mirror thermal noise is a dominant noise

source at room temperatures and reduction of it will improve the sensitivity of gravitational

wave detectors.

For the first few weeks of the program, I read as much as I could about aLIGOs’ fused

silica quasi-monolithic suspension system shown in Fig. 1. Although Silica is not a good

candidate for cryogenic temperatures, it was important to understand the upgrades from

initial LIGO to begin to think about the design of the new suspension system for the 10m

prototype.

FIG. 1: The figure shows aLIGOS’ fused Silica quasi-monolithic suspension system. The

first 3 stages have springs that metal fibers are then suspended from. The test mass is

then suspended from fused silica fibers due to the lower energy of the molecules within the

material, reducing unwanted noise in the mirrors.
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The suspension is composed of a 4-segment pendulum. The first 3 grey objects have

springs that metal fibers are then attached to, while the test mass is suspended from (4) fused

silica fibers. This is because the molecules in silica are less energetic than the molecules in the

metal. Therefore, the thermal noise introduced to the test mass is reduced by suspending it

with silica fibers. The mechanical dissipation of the system gives rise to thermal displacement

noise. Therefore, mechanical loss is a key material property that defines thermal noise

performance.

For seismic isolation, aLIGO has ”passive” and ”active” isolation systems. The passive

systems arise due to the principles of pendulums, each link acts as a shock observer. The

noise falls off as 1/f 2 for each stage, hence 4 stages means the noise is reduced by a factor

of 1/f 8. For the active system, actuators apply a counteractive force to components of the

suspension that compensate for unwanted physical vibrations.

I also spent a lot of time learning about the KAGRA suspension system, shown in Fig. 2,

due to its’ operations at cryogenic temperatures.

FIG. 2: KAGRA 9-stage suspensions system is composed of the Type-A tower, the first 5

stages, which operates at room temperature and a cryogenic payload, last 4 stages, that

operates at T = 20K
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The first five stages of KAGRA: F0, F1, F2, F3, and BF , are called the ”type-A tower”

and operate at room temperature. The lower four stages are called the ”cryogenic payload”,

which operates at T = 20K, shown in Fig. 3.

FIG. 3: The cryogenic payload is composed of a test mass chain surrounded by its’ corre-

sponding recoil masses (RM’s). The test mass chain includes the Marionette mass (MN),

Intermediate mass (IM), and the Test mass (TS).

The cryogenic payload has two chains, a test mass chain (TM) and a recoil mass chain

(RM) that are independently suspended from the platform (PF). The test mass chain in-

cludes the marionette mass (MN), Intermediate mass (IM), and the Test mass (TM) which

are all surrounded by their corresponding recoil mass. The cryogenic payload also has 3

different kinds of local sensors to control the suspensions: angular sensing optical levers

(OPlevs), length sensings OPlevs, and photo-reflective displacement sensors. Similar to

aLIGO, there are actuators on the cryogenic payload to counteract unwanted vibrators.

KAGRA is also underground, which in itself provides seismic isolation. The 9-stage system

indicates that the seismic noise on the test mass is reduced by a factor of 1/f 18.

Although there is much more detail that I simply do not have space to include, learning

about these suspension systems provided a good background to start thinking about the

designs for the 10m upgrade. Starting with a simplified model of a mass on a spring, an

expression for the thermal displacement noise for the pendulum, vertical, and violin modes

were found (Equations 7, 20, and 24). As previously stated, the mechanical loss of the
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system is a key property that defines the thermal noise, so the total mechanical loss was

also found for the pendulum, vertical, and violin modes. The resonant frequencies for the

3 modes were also investigated. A python code was then created to map out the thermal

displacement noise of the pendulum, vertical, and violin mode together.

An estimate for the seismic noise was also attempted, but due to timing restrictions was

not completed. There is more detail about the seismic noise calculations in the ”future

work” section.

II. METHODS: PENDULUM MODE

A. Derivation of Thermal Displacement Loss for Pendulum Mode

First, an equation for the thermal displacement noise, X(ω), was derived using Eq. 1

to analyze the thermal noise of the suspensions in the pendulum mode. Sx is the power

spectra density, KB is Boltzmann constant, T is temperature, ω is the angular frequency,

and R[Y (ω)] is the real part of the admittance. Eq. 2 shows the relationship between the

admittance, Y (ω), and the impedance, Z(ω), while Eq. 3 shows the mechanical impedance

used for the derivation where F is the net force and ẋ is the velocity of a mass in a spring

system.

Sx(ω) =
4kBT

ω2
R[Y (ω)] (1)

Y (ω) =
1

Z(ω)
(2)

Z(ω) =
F

ẋ(ω)
(3)

The analysis begins by thinking about the equation of motion for a mass, m, on a spring

with drag coefficient b and spring constant k, shown in Eq. 4. This is a second order linear

ordinary differential equation and governs the motion of this mass-spring oscillator.

F = mẍ+ bẋ+ kx (4)

The goal is to find the mechanical impedance of a spring-mass system by using the

solution of Eq. 4 and some algebraic manipulation. Finding the mechanical impedance will
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allow us to find the admittance, and in turn the power spectra density. First, we divide by

m on both sides which results in Eq. 5. Let γ = b
m

and ω2
o = k

m
, where γ is the damping

coefficient and ωo is the resonant frequency of the pendulum mode.

F

m
= ẍ+ γẋ+ ω2

ox (5)

The solution to Eq.5 takes the form of x = xoe
iωt, the first and second derivatives are

shown below.

Solution to equation of motion for spring-mass system and it’s derivatives:

x(ω) = xoe
iωt

ẋ(ω) = iωx0e
iωt

= iωx

ẍ(ω) = (iω)2xoe
iωt

= iωẋ

Next, we insert ẍ and x back into Eq. 5 and multiply the left hand side by iω
iω

to allow

the whole expression to be in terms of ẋ. This step will allow us to easily manipulate the

expression to result in the form of the admittance, as shown below.
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Find the admittance:

F

m
= ẍ+ γẋ+ ω2

ox

= iωẋ+ γẋ+ ω2
o(xoe

iωt)×iω
iω

=
−ω2ẋ+ iωγẋ+ ω2

oiωx0e
iωt

iω
( where iωx0e

iωt = ẋ)

=
−ω2ẋ+ iωγẋ+ ω2

o ẋ

iω

F

ẋ
= −ω2 + iωγ + ω2

o(
m

iω
) (Recall Z(ω) =

F

ẋ(ω)
and Y (ω) =

1

Z(ω)
)

Y (ω) =
iω

m

1

((ω2
o − ω2) + iωγ)

Next, we must identify a relationship between γ and the mechanical loss, θ, of the spring-

mass system. By comparing the second line below to Eq. 5 we can easily see the relationship

between γ and all the other parameters. This step will be crucial further into the derivation.
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Force on a mass-spring system accounting for mechanical loss:

Fspring = −k(1 + iθ)x

Fnet = mẍ+ k(1 + iθ)x

= mẍ+ ikθx+ kx

Recall F = mẍ+ bẋ+ kx

∴ ikθx = bẋ and ẋ = iωx

ikθx = biωx

kθ = bω

b =
kθ

ω
∴ γ =

b

m
=

kθ

ωm

γ =
kθ

ωm

Finally, the steps to find the real part of the admittance and in turn find an expression

for Sx(ω) are shown below. The power spectra density has units of m2

Hz
which means we can

obtain X(ω) by simply taking the square root of Sx(ω), as shown in Eq. 6.

X(ω) =
√
Sx(ω) (6)
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Find real part of admittance and thermal displacement noise:

Y (ω) =
iω

m

1

((ω2
o − ω2) + iωγ)

(multiply by complex conjugate)

=
iω

m
[

1

((ω2
o − ω2) + iωγ)

× ((ω2
o − ω2)− iωγ)

((ω2
o − ω2)− iωγ)

]

=
iω

m
[

(ω2
o − ω2)− iωγ

(ω2
o − ω2)2 + ω2γ2

]

=
iω(ω2

o − ω2) + ω2γ

m[(ω2
o − ω2)2 + ω2γ2]

(Now take the real part)

R[Y (ω)] =
ω2γ

m[(ω2
o − ω2)2 + ω2γ2]

(Recall γ =
kθ

ωm
)

=
ωkθ

m2[(ω2
o − ω2)2 + ω2( kθ

ωm
)2]

(Recall ω2
o =

k

m
)

=
ωω2

oθ

m[(ω2
o − ω2)2 + ω4

oθ
2]

(Recall Sx(ω) =
4kBT

ω2
R[Y (ω)])

Sx(ω) =
4kBT

ωm
× ω2

oθ

[(ω2
o − ω2)2 + ω4

oθ
2]

Sx(ω) = X(ω)2 where X(ω)2 is the thermal noise displacement

X(ω) =
√
Sx(ω)

∴ Thermal Displacement Noise is

X(ω) =

√
4kBT

ωm
× ω2

oθpendulum
[(ω2

o − ω2)2 + ω4
oθ

2
pendulum]

(7)
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The thermal displacement noise is dependent on the resonant frequency, ωo, the frequency

of interest, ω, the mass of the object, m, the temperature operating at, T , and the mechanical

loss of the pendulum, θpendulum. First, an estimate for the resonant frequency can be found

by thinking about a simple pendulum. The resonant frequency is then dependent on the

length of the pendulum and the gravity of Earth, as shown in Eq. 8.

ωo =

√
g

L
(8)

ωo = 2πfo (9)

B. Mechanical Loss for Pendulum Mode

In order to find the mechanical loss of the pendulum, we must first find an estimate for

the mechanical loss of the fiber, θfiber. The mechanical loss of the fiber is composed of two

components: the loss that arises at the surface of the fiber and the thermoelastic loss as

described in Eq. 10.

θfiber = θsurface + θthermoelastic (10)

Eq. 11 is used to find the surface loss, where hθs is the surface loss constant (Table. I)

and d is the diameter of the fiber (Table. IV).

θsurface ≈
8hθs
d

(11)

d = 2r (12)

To obtain an expression for the radius we must think about the static stress, σ, applied

on the fiber. The stress is the force divided by the area of the fiber, where the force is equal

to mass times accelerations and the area is that of a circle as shown below. It is important

to note that the mass is m
n

because there are n fibers attached to the test mass (n = 4).

10



Derivation of radius equation:

σ =
F

A

=
m
n
g

πr2

r =

√
m

n

g

πσ
where n=4 fibers (13)

The thermoelastic loss is due to the bending of the fiber that suspends the test mass,

the expression for it is shown in Eq. 14. Y is Young’s Modulus, T is the temperature, ρ is

the density, C is the specific heat capacity, α is the coefficient of linear thermal expansion,

σ is the static stress, ω is frequency of interest, and τ is the characteristic heat flow time

(Eq. 15), where d is the diameter of the fiber and K is the thermal conductivity.

θth(ω) =
Y T

ρC
(α + σ

β

Y
)2

ωτ

1 + (ωτ)2
(14)

τ =
1

4.32π

ρCd2

K
(15)

The total mechanical loss of the pendulum system is actually less than the mechanical loss

of the fiber due to a significant amount of energy being stored in the lossless gravitational

field. Therefore, to find the total loss of the system we must divide the loss of the fiber

by the dilution factor, D, as shown in Eq. 16. Eq. 17 shows the expression for the dilution

factor, where L is the total length of the pendulum, T is the tension on the fiber (Eq. 18),

n is the number of fibers (n = 4), Y is Young’s modulus, and I is the moment of cross

sectional area (Eq. 19).

θpendulum =
θfiber
D

(16)

D =
2L
√
T

n
√
Y I

(17)
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T =
mg

n
(18)

I =
πr4

4
(19)

Finally, all of the expressions necessary to design a code that will map the thermal dis-

placement noise of the pendulum mode have been found. Some of the parameters discussed

earlier are coded as variables to allow easy manipulation of the values for optimization, such

as the value of the test mass and the total length of the pendulum. However, other values

are dependent on the material used. For Cryogenic purposes, Silicon is a good candidate

and some of the properties are shown in Table. I.

C. Parameter Values for Thermal Noise Plots

Material properties Silicon T=123K

Surface Loss Constant, hθS 5× 10−13 m

Density, ρ 2330 Kgm−3

Young’s Modulus, Y 167× 109Pa

Coefficient of Thermal Expansion, α 2.4× 10−8 K−1

Thermal Conductivity, K 1.45 W/mK

Specific Heat Capacity, C 711 J/K

Thermoelastic Coefficient, β −1.9× 10−5k−1

Surface loss constant, hθs 5× 10−13m

TABLE I: Silicon material properties that are hard coded in Python
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Code Variables Values

Stress,σ 30MPa

Total Length of Pendulum, L = ln × n L = 20Cm n = 2 or n = 3

Mass, m 1kg

Frequency of interest, f = ω/(2π) .1− 100Hz

Mass of the fiber, m 1Kg

TABLE II: Adjustable code variables in python

III. METHODS: VERTICAL AND VIOLIN MODES

A. Thermal Displacement Noise Vertical Mode

The suspension fibers can be thought about as stiff springs, like any other spring this

will give rise to the ”vertical” or ”bounce” mode due to the restorative force. Eq. 20 shows

the expression for the thermal displacement noise of the vertical mode, Xv(ω), where ωv

is the resonant frequency and θv(ω) is the mechanical loss. The value .001 is the accepted

conservative estimate of vertical to horizontal motion cross coupling due to the earths’

curvature. KB, T , m, and ω are the same parameters as the thermal displacement noise for

the pendulum mode.

Xv(ω) = .001

√
4KBT

mω
(

ω2
vθv(ω)

ω4
vθ

2
v(ω) + (ω2

v − ω2)2
) (20)

Similar to the pendulum mode, estimates for the resonant frequency are necessary to

obtain the thermal displacement noise. To find an expression for ωv, we must think about

the force exerted by stretched or contracted material as shown on the third line below. An

expression to solve for the spring constant can be found by comparing the stretch force to

Hooke’s law. The spring constant will then allow us to estimate the resonant frequency as

shown in Eq. 22.
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Derivation for resonant frequency of vertical mode:

Y =
σ

ε

=
F

A

L

∆L

F = Y A
∆L

L

F = k∆L Hooke’s law

∴ by comparison

k =
Y A

L
(21)

F = mẍ+ bẋ+ kx

∴

ω2
v =

k

m

m = m/4

ωv =

√
4k

m
and fv =

√
4k

m
/2π (22)

Next, an estimate of the mechanical loss of the vertical mode is required according to

Eq. 20. In this case, the thermoelastic loss can be neglected due to the fact that the fibers do

not bend in the vertical mode. The total mechanical loss is merely the surface loss, Eq. 23.

All the expressions to plot the thermal displacement noise of the vertical mode have been

derived and solved for, the plots will be shown in the ”Results” section.
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θv(ω) ≈ θsurface(ω) ≈ 8hθs
d

(23)

B. Thermal Displacement Noise for Violin Mode

The violin modes, excitation of transverse modes of vibrations of the suspended fibers,

can lead to motion of the test mass. This motion can then be sensed by the interferometer

and documented at its’ output signal for many harmonics. Eq. 24 shows the expression

needed to find the thermal displacement noise for the jth violin mode where mfiber is the

mass of the fiber, ωvio j is the resonant angular frequency for the jth mode, and θvio is the

mechanical loss. The other terms in the expression are the same as the previous thermal

displacement noise equations (Eq. 7 and Eq. 20).

Xviolin j(ω) =

√
4KBT

ω

2mfiber

π2m2j2
(

ω2
vio jθvio

ω4
vio jθ

2
vio + (ω2

vio j − ω2)2
)for the jth individual violin mode

(24)

Similarly to the pendulum and vertical modes, estimates for the resonant frequency,

Eq. 25, are required for the first 3 violin modes. A small derivation of the resonant frequency

for j = 1 is shown below where T (Eq. 18) is the tension of each string, µ is the linear density

of the fiber (Eq. 30), and L is the total length of the pendulum. Eq’s. 26 and 27 show the

expressions used to find the resonant frequency for the second and third violin mode.
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Resonant frequency for j is 1:

c = fλ

λ = 2L

∴

f =
c

2L

∴

fvio1 =

√
T
µ

2L
(25)

fvio2 = 2× fvio1 (26)

fvio3 = 3× fvio1 (27)

ωvio j = 2πfvio j (28)

The mechanical loss of the violin mode is twice that of the pendulum mode as shown in

Eq. 29. Eq. 31 shows the expression to find the mass of the fiber where r is the radius, L is

the length of the pendulum, and ρ is the density of silicon.

θvio = 2× θpendulum (29)

µ = πr2ρ (30)

mfiber = πr2Lρ (31)

Finally, the thermoelastic noise for the pendulum, vertical, and violin modes j = 1, 2, 3

were plotted and shown in Fig. 4.
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IV. RESULTS

Resonant Frequency Variable Value

Pendulum mode fo 1.11Hz

Bounce mode fv 83.16Hz

First violin mode fvio1 283.67Hz

Second violin mode fvio2 567.35Hz

Third violin mode fvio3 851.02Hz

TABLE III: Resonant frequency values for all modes

Name Variable Value

Tension T 2.4525 N

Diameter of fiber d 0.000322 m

Dilution factor D 16.617

Surface loss θsurface 1.239× 10−8

TABLE IV: Values obtained using the specific silicon material properties and values from

table. II
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FIG. 4: Thermal displacement noise plot of pendulum (first peak), vertical (second peak),

and violin modes (3rd,4th, and 5th peak) all together.

V. ANALYSIS

Table III shows the results for the resonant frequencies of each mode of interest, found by

using values from Tables II and IV. Table IV shows values obtained via the coding process

for tension of the fibers, diameter of the fibers, surface loss, and the dilution factor. The

resonant frequency values are kind-of arbitrary on their own until optimization of suspension

parameters are found. However, they help provide a plot to start understanding what the

thermal noise looks like for these suspension systems at cryogenic temperatures.

Fig. 4 shows the pendulum mode (first peak), vertical mode (second peak), and first 3

harmonics of the violin mode together (3rd, 4th, and 5th peaks) in log space. Each peak

corresponds to the resonant frequency of the respective mode. The plot shows that the

vertical and violin modes do not change the slope of the pendulum mode, they simply add
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some ”annoying” spikes to the noise. This means that the pendulum mode is the dominant

source of thermal noise. Another observation is that the violin modes get closer together

in log space because they are simply multiples of the first harmonic as described in Eq. 26

and 27. These results are the first step in being able to optimize some of the parameters

such as: the length of the pendulum, the test mass value,the stress the fibers can support

before breaking, and even the number of stages of the suspension system. The next steps

and future work will be discussed in the next section.

VI. FUTURE WORK

The next step of this project would be to find an estimate for the seismic noise, which

I did not have enough time to complete. The number of stages, n, for the upgrades to the

10m prototype suspension system at the University of Glasgow will probably only be 3 or 2

stages.

A. Seismic noise: Horizontal Isolation

First, we begin by thinking about the motion being restricted in a single axis, x, shown

in Fig. 5. This will be the horizontal contributions of the seismic noise on the suspension

system.

FIG. 5: Generalized multistage pendulum system used to think about the seismic noise

isolation. The masses are constraint to moving in one single direction, x. xg is the ground

motion (also limited in movement in only the x − axis), x1 to x3 are the motions of the

stages 1−3, m1 to m3 are the mass of the stages, and finally k1 to k3 are the spring constants

of the stages.
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Equations 32 and 33 are required to find the transmission of seismic noise where x3 and

x2 are the motion of stages n=3 and n=2 respectively, xg is the ground motion, kn is the

spring constant for the respective stage, mn is the mass of the stage, and f is the range of

frequencies of interest (.1− 100Hz).

for n=3 :
x3
xg

=
1

(2πf)6
k1k2k3

m1m2m3

(32)

for n=2 :
x2
xg

=
1

(2πf)4
k1k2
m1m2

(33)

An estimate for the springs constants can be found by using Eq. 34 where li = ln is the

individual length of the stages. The relationship between the individual stage length, ln,

and the total length of the pendulum system , L, is shown in Eq. 35. It is important to note

that the seismic noise falls of as 1/f 2 for each stage. Hence 3 stages means the noise falls

off as 1/f 6 while 2 stages means the noise falls off as 1/f 4.

kn = g
n∑
i=1

mi

li
(34)

ln =
L

n
(35)

B. Seismic Noise: Vertical Isolation

The expressions to find the transmission of seismic noise through the system in the vertical

direction are shown in equations 36 and 37 where g is the gravity of earth, and l1-l3 are the

length of the stages 1-3. These expressions can be used to find the optimization of the length

of the stages and the mass of the stages.

for n=3 :
x3
xg

=
g3

(2πf)6
1

l1l2l3

(m1 +m2 +m3)(m2 +m3)(m3)

l1l2l3
(36)

for n=2 :
x2
xg

=
g2

(2πf)4
1

l1l2

(m1 +m2)(m2)

l1l2
(37)

The values for ln were found by setting an arbitrary pendulum length L = 20Cm (Ta-

ble II) and dividing by the number of stages, n (Eq. 35). Each stage will be of equal length
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and will make up the total length of the multistage pendulum. Estimates for the spring

constant can be found by using Eq. 34.

C. Ground Motion

Unfortunately, I did not understand how to obtain an expression for the ground motion

at the site of the 10m prototype at the University of Glasgow. For this very reason, I was

unable to create a code that would map out the vertical and seismic noise for the multistage

pendulum. I did create a code that would ideally plot the seismic noise with the assumption

that xg was in the form of 1/f 2. Sadly, this is not a good approximation and the plots do

not hold any valuable information so I will not include them in this paper. On a side note,

the ground motion would also allow us to figure out at what resonant frequency our system

needs to operate at. If we think about a single mass on spring, then the idea is that we can

operate the system such that the ground motion is higher than the resonant frequency. In

this case, the ground can bounce up and down very quickly but the mass and springs have

inertia that inhibits the motion of the ground on the system. This is the case that gives

seismic isolation in the form of 1/f 2 and the concept can be used for multistage pendulum

systems.

D. Other Future Work

Ideally, the seismic noise and the thermal noise plots would give us an opportunity to

investigate how certain parameters, such as the length of the pendulum and the lengths of

the individual stages, could affect either seismic or thermal noise. For example, the seismic

noise falls off as 1/f 2 for each stage. Naturally, one would think that large amount of short

stages , like KAGRA, would mean better seismic isolation. However, according to my mentor

Dr. Hammond, the thermal noise performance is better with longer stages.

As previously mentioned, in the suspension systems of aLIGO, some stages have springs

and others do not. Our model and design will be similar, where some of the first stages will

contain springs while the bottom stages will not. The next step would be to estimate the

spring constants required for some known optimal value of spring resonant frequency that

supports some known optimal value of mass using ω2
o = k/m. Once an estimate for the
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spring constant is known, then we can start thinking about how to design such a spring that

operates in a vacuum system.
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