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ABSTRACT 
 

 This paper discusses our search for the source of the cylindrical component of the wavefront 

aberration signal measured and our search for possible causes for the rms values to be significantly poorer 

than expected when the frames are not shuffled. Although no definite cause has been identified, we have 

conducted testing on a more in-depth level than had been done previously and have come closer to 

understanding which mechanisms may or may not be at fault. We found that factors such as heating 

method, method of subtracting prism, replacing the camera, using heat sinks, or using the brass and 

aluminum set-up in place of the invar set-up did not affect our results. However, we discovered that slight 

air disturbances had a great effect on the centroid displacement. 

 

 

           Introduction 

 

 

A Motive 

 

 An international collaboration of scientists is working to make Advanced LIGO (Laser 

Interferometer Gravitational Wave Observatory) more sensitive than initial LIGO by over a 

factor of 10. It is predicted that the Advanced LIGO will be able to detect a gravitational wave 

roughly once a week, a vast improvement from the initial LIGO which is expected to make a 

detection approximately once every 50 years. The power in the Fabry-Perot cavities of the 

Advanced LIGO is expected to be on the order of 1 MW
1
. These improvements require 

simultaneous technological developments in the correction system used to maintain proper 

functioning of the detector. To maximize the sensitivity of Advanced LIGO and effectively 

compensate for wavefront distortions such as those due to thermal lensing, it is important to have 

a wavefront sensor that is able to accurately measure those distortions. The Optics and Photonics 

group at the University of Adelaide has developed a Hartmann wavefront sensor with a precision 

of λ/15,500 and an accuracy of λ/3,300 at a measurement wavelength of 800 nm
2
. Due to its 

ultra-sensitivity, it has been selected to be used in Advanced LIGO. 

            The Hartmann sensor is a type of wavefront sensor that can both detect wavefronts and 

changes in wavefronts. The Shack-Hartmann sensor is one type of Hartmann sensor that is used 

frequently, especially by astronomers. It uses a micro-lens array and is very light efficient, but 

cannot make measurements with high precision. The sensor that the University of Adelaide is 

developing is a Hartmann wavefront sensor which is not as light efficient but can make highly 

accurate measurements and is thus more suited for gravitational wave detection.  

 

B.  Hartmann Wavefront Sensor Basics 

 

            The light source being used is a single mode fiber coupled laser diode that emits 

at λ= 980 nm. The Hartmann plate, shown in Figure 1, consists of an array of 1,024 holes. Light 

rays, perpendicular to the light waves incident on the Hartmann plate, propagate from these holes 

creating spots on the CCD camera. When wavefront distortion is present, the positions of the 

spots change. Wavefront distortion, ΔW, can be calculated by dividing this displacement in 

centroid position, Δy, by the distance between the Hartmann plate and the CCD camera, L, and 

then numerically integrating the quotient.  

  



  
Figure 1: This diagram shows the change in spot positions, Δy, due to wavefront distortion along with the distance, 

L, between the Hartmann plate (HP) and the CCD camera, both of which are involved in calculating the wavefront 

change
3
. 

 

 Thus, to calculate the wavefront distortion it is important to know the value of L and 

the change in centroid position to a high degree of accuracy. Centroid position is calculated 

accordingly,   

 

 
where Iij refers to the number of photon counts in pixel (i,j). It has been noted that increasing the 

weighting reduces error, and in this case P = 2 was chosen for computational convenience
4
. 

 Since the Adelaide group‟s development of an ultra-sensitive Hartmann sensor, they 

have looked for ways to reduce the sensor‟s thermal sensitivity. This has included replacing the 

brass Hartmann plate and aluminum clamp and spacer plates with plates made of invar. Invar is a 

steel alloy and has a very low coefficient of thermal expansion. They have also added heat sinks 

on each side of the camera to siphon off excess heat. The heat sinks are clearly visible on each 

side of the camera in the cover figure along with the invar clamp plate. Upon close examination 

the top side of the invar spacer plate can be seen behind the clamp plate and the invar 

Hartmann plate can be seen within the opening of the clamp plate. 

 The objectives of my project this summer were to find a way to raise the camera 

temperature by a few degrees and then test the modified Hartmann sensor‟s temperature 

sensitivity. I used MATLAB programs developed by Won Kim to both optimally set up the CCD 

camera and then, after taking pictures at different temperatures, to analyze the change in spot 

centroid positions. 

 

 Methodology 

                    

 

A. Calculating rms 

 

 The program centroid_statistics_raw_bygrid_opt_avg.m calculates and plots the rms 

values of the centroid positions at one temperature after averaging different numbers of frames. 



The user specifies the number of frames that will make up the reference set and the number of 

frames that will make up the „test‟ set that will be compared to the reference set. We usually took 

5000 pictures, designated the first and last two thousand as the reference set, and designated the 

middle thousand (pictures 2001-3000) to be the test set. The program then stores rms values, 

calculated after averaging different numbers of frames, in a matrix. The set of numbers of frames 

are chosen by the user; for example for a set of 5000 pictures (or 1000 test frames), we usually 

specified the program to calculate and store in a matrix the rms values after averaging 1 frames, 

2 frames, 5 frames, 10 frames, 20 frames, 50 frames, 100 frames, 200 frames, 500 frames, and 

finally 1000 frames. The program actually stores two matrices of rms values, one using a built-in 

MATLAB method of detecting the centroids, and another using an improved method of centroid 

detection that Won constructed.   

 The user also has to specify the file to obtain the pictures from and set three options at 

the beginning of the program to be true of false. These options are „average_pixels‟, 

„manual_bg‟, and „shuffle_array‟. Shuffle_array allows the user to shuffle the frames before 

calculating the rms, which, if the noise is purely random, should make no difference. Manual_bg 

allows the user to specify the background noise to subtract from the overall signal. 

Average_pixels is set true when using the brass Hartmann plate and aluminium clamp and spacer 

plates instead of the invar. When using these plates more significant diffraction occurs which 

causes the computer program to detect multiple centroid peaks within the same spot. 

Average_pixels blurs the spot images so that the computer still detects one centroid peak per 

spot.  

 Finally, the program also displays two plots of rms as a function of number of frames 

that have been averaged, one using the MATLAB rms values and another using the rms values 

calculated by Won‟s method. Each plot displays the theoretically predicted line of slope -0.5, the 

actual data, and the linear fit to that data. The program outputs the slopes of the linear fits, as 

well. 

 

B.        Analyzing Wavefront Change 

 Although using paraxial approximations can be very effective for a variety of 

calculations in geometrical optics, to determine the wavefront change to the degree of accuracy 

needed in Advanced LIGO it is necessary to take into account the aberrations implied by the 

higher order approximations particularly those contributed by the term 
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To describe the wavefront we have used the following equation: 
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The third and fifth terms describe the relevant third order aberrations, or Seidel aberrations, for 

the monochromatic light source being used. These are spherical aberration and coma, 

respectively. The first term is prism which describes the effect when wavefront is tilted off-axis 

with respect to a lens, the second term is spherical power which is proportional to the curvature 



of the wavefront, and the fourth term is cylindrical power which describes how the wavefront 

curvature deviates from spherical form [3].  

 The program wf_aberration_temperature_bygrid.m performs a least squares fitting by 

calculating values for the wavefront aberration parameters from the transverse aberration of the 

spots in the x and y directions. It then uses these parameters to construct contour plots of the 

gradient of the wavefront change. It calculates the transverse aberration by detecting the spot 

centroids in two sets of spot images taken at different temperatures and calculating the 

displacement between the „low temperature‟ spots and the corresponding „high temperature‟ 

spots. As mentioned above,  
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Using equation (3), one can evaluate equations 4 and 5 in the following manner: 
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Assuming that χ
2
 is a smooth, well-behaved function, the least-squares-method is used to 

determine the best estimates of the eight coefficients a0… a7.  These coefficients are then used to 

calculate the values of the coefficients in equation 3. A contour plot of the gradient of the 

wavefront change can then be fitted to these parameters. 

 

C. Camera Set-up 

 

 The two main frame grabber programs that helps interface the CCD with the computer 

are Pdv Show and Pdv Utilities. Pdv Utilities can be used to send commands to the camera. One 

of these commands that we frequently used measures the temperatures of the camera‟s digitizer 

board and sensor board. We also used a hand-held IR thermometer pointed at the heat sinks to 

take the temperature. These values were correlated with the computer measurements, indicating 

that the IR thermometer accurately measured relative temperature, if not absolute temperature.  

 Another command took a user-specified number of frames and saved them to a user-

specified file. Pdv Show enabled us to take and visualize a still frame or the continuous frames 

that the camera was currently imaging. Pdv Show also included an option that displays the 

intensities of the current image being displayed, whether it was still or continuous. Pdv Show 

was very useful in ensuring the Hartmann plate was ideally aligned with the CCD and that none 

of the pixels reached saturation. In distinguishing different voltages detected by the CCD, the 

maximum intensity count is a function of the number of bits per pixel, n: 

 

                             Intensity count = 2
n
 -1                          (9) 



Thus, since we used a 12-bit camera, a pixel saturates when the intensity count reaches 4095. 

 In determining that the camera was set-up correctly we used the MATLAB code 

calibrationtest_opt_avg.m. After saving a still frame image using Pdv Show, the code would 

output the maximum pixel intensity of that image, the number of peaks detected in the image, a 

plot of the pixel intensity of each peak, and a plot that shows the locations of the centroids that 

were detected. This latter plot was useful in determining if some „partial spots‟, spots that only 

partially fit onto the active surface of the CCD, were being detected. It was also important to 

ensure that pictures that were being compared had the same number of spots. Pictures were 

always taken with the lights of the room turned off. 

 

 Results 

 

A. Results of Wavefront Aberration Analysis 

 My initial objective was to find a way to raise the temperature of the camera a few 

degrees Celsius so I could then proceed to comparing measurements of the spot positions at 

different temperatures. We started out by covering the top of each heat sink with a piece of lens 

cleaning tissue and then multiple pieces, hoping to heat the camera by interfering with the 

convection process that was cooling the camera. This method proved insufficient so we then 

tried covering the whole top of the camera and heat sinks with a single, and then multiple, pieces 

of regular white printer paper, cut to fit the shape. This also proved insufficient in raising the 

temperature even when the stack of paper was several sheets thick. We were finally able to 

successfully raise the temperature 2-3 degrees by creating a sort of "hat" for the camera and heat 

sinks. This "hat" consisted of several sheets of printer paper that covered not only the top of the 

camera and heat sinks but also draped the full length of the sides of the heat sinks, which proved 

sufficiently effective in disrupting the convection. 

 Once we found this way of increasing the camera temperature, we were able to start 

analyzing the centroid movement caused by temperature changes. We analyzed 5000 pictures 

taken at the camera‟s “room temperature”- its equilibrium temperature in absence of any heating 

devices- and 5000 pictures taken after this temperature was raised 4 degrees. After increasing the 

temperature we would expect the CCD plate to expand more than the Hartmann Plate (now made 

of invar with a very low coefficient of thermal expansion), causing the spots to appear as if they 

contracted, in a spherical pattern. The spherical pattern of centroid motion was observed by 

Aidan Brooks in the initial Hartmann Sensor, before it was modified to reduce its temperature 

sensitivity. However, after running the code to analyze wavefront change we calculated a larger 

value than expected for C, the coefficient in equation 3, indicating an unexpected, relatively 

large cylindrical component of the wavefront aberration. The value for C and the value for S, the 

spherical component, were both approximately on the same order of magnitude, 10
-3

. Since this 

contradicted our expectations of the value of C to be much smaller than the value of S, we 

needed to determine whether this was a real signal, so we took measurements of the noise to 

make sure that the wavefront aberration noise was random.    

 We divided 2000 pictures, and later 5000 pictures, all at the same temperature into pairs 

of 200 pictures and compared centroid position changes for each pair. Using a MATLAB 

program, we calculated the S and C values for each pair, the overall average values for the 

spherical and cylindrical components, <S> and <C>, respectively, and the standard deviation of 

the average values, σS and σC. If the noise was random, the average values should be 



approximately zero. We expected <S> to be close to10
-6

 m
-1

, but calculated a slightly larger 

value <S> = -8.28 * 10
-6

 m
-1

, where σS = 2.46*10
-4

. We calculated <C> = 7.03*10
-5

 m
-1 

and  

σC = 2.65*10
-4

. So both averages were fairly small values as expected for random noise. Running 

the wavefront aberration analysis code we calculated the aberration parameters p, s, and c, for 

one of these pairs of 200 images all taken at the cooler temperature to be p = 9.77*10
-7

,  

s = 1.24*10
-6

 m
-1 

and c = 2.74*10
-4 

m
-1

. We did the same calculation comparing frames all at the 

elevated temperature and found p = 3.35*10
-7

, s = 7.08*10
-5 

m
-1

, and c = -1.81*10
-4 

m
-1

. 

However, for frames taken at different temperatures p = 4.50*10
-5

, s = -2.5*10
-3 

m
-1

,  

c = 1.22*10
-3 

m
-1

. Thus for these samples prism and spherical power are both two orders of 

magnitude larger than their “noise values” and the cylindrical power is an order of magnitude 

larger than its “noise values”.  

 We used MATLAB to construct contour plots of radial centroid displacement between 

cool images only, shown in Figure 2, and between hot and cold images, shown in Figure 3. The 

color bars roughly indicate the values of maximum and minimum spot displacements but are not 

correlated between plots. 

 

 
 

 

Radial Centroid Displacement between Cool Images 

Figure 2: Contour plot of radial displacement between cool images only. The axes 

indicate pixel position. 

 



 
Figure 2 supports the conclusion that the noise is truly random since there is no obvious pattern 

or signal in the displacement and all values are relatively small. Figure 2 illustrates the 

cylindrical nature of the signal when comparing centroid positions at different temperatures with 

the magnitude of the signal being about an order of magnitude larger than the magnitude of the 

noise. 

 Since the cylindrical component of the signal seemed to be real, we started trying to 

discover its source since it was absent in measurements using the initial Hartmann sensor. To see 

if the cylindrical pattern was a feature of the heating method we decided to induce the 

temperature change by heating the room with the air conditioner, instead of using the “hat”, and 

turning it off as soon as the sensor reached the desired temperature. We found that the 

temperature of the Hartmann Sensor did not change significantly during the measuring period 

after the air conditioning had been turned off. When analyzing the wavefront aberration using 

5000 frames taken at room temperature and 5000 frames taken at a temperature elevated five 

degrees using this new heating method, we calculated p = 1.49*10
-4

, s = -1.42*10
-3 

m
-1

, and 

 c = 5.86*10
-4 

m
-1

. The cylindrical component was still clearly visible in the contour plot as well, 

indicating that this feature is independent of heating method. 

 Since there was a fairly strong prism in the signal as well, we decided to see if the 

cylindrical component was still present after removing the average prism. Again we took 5000 

pictures at room temperature, 200 pictures at a temperature elevated about one degree, and 5000 

more pictures at a temperature elevated about five degrees. Figures 4 and 5 display the contour 

plots of centroid displacement before removing prism for the one degree increase in temperature 

Radial Centroid Displacement between Hot and Cool Images 

 

Figure 3: Contour plot of radial displacement between hot and cool images 

displaying cylindrical nature of signal. The axes indicate pixel position. 

 



and the five degree increase in temperature, respectively. Before removing prism the aberration 

parameters when comparing the frames with a one degree temperature difference were calculated 

to be p = 1.46*10
-5

, s = 1.78*10
-4 

m
-1

, and c = -1.47*10
-4 

m
-1

. 
 
For the five degree temperature 

difference they were calculated to be p = 1.46*10
-4

, s = -1.58*10
-3 

m
-1

,and c = 1.31*10
-3 

m
-1

. 

Figures 6 and 7 display the contour plots of centroid displacement after removing prism. Once 

again the color bars are not completely correlated between images.  

 

 
                     Figure 4: Contour plot of centroid displacement between images taken at temperatures  

            1 degree apart. Axes indicate pixel position. 

 

 

Centroid Displacement before Removing Prism 

Centroid Displacement before Removing Prism 

Figure 5: Contour plot of centroid displacement between images taken at 

temperatures 5 degrees apart. Axes indicate pixel position. 

 



     

 

 
                   Figure 6: Contour plot of centroid displacement between images taken at temperatures 1 degree  

                   apart. Axes indicate pixel positions. 

 

 
                      

Centroid Displacement after Removing Prism 

Centroid Displacement after Removing Prism 

Figure 7: Contour plot of centroid displacement between images taken at temperatures 

5 degrees apart. Axes indicate pixel position. 

 



 The displacement in the plots comparing frames taken at room temperature and frames 

taken after increasing the temperature by one degree appears more random. As the room 

temperature frames are compared with frames taken at higher temperatures, the displacement 

plots become more organized. We later took similar measurements incrementing the temperature 

by one degree for ten degrees. The subsequent contour plots of the displacement also were more 

random when comparing frames at temperatures a few degrees above the initial equilibrium 

temperature and became more organized into a cylindrical structure as the temperature of the test 

frames increased. Although not as obvious as in Figure 5, there still seems to be a strong 

cylindrical component in Figure 7, indicating that removing the prism did not remove the 

cylindrical power.  

 Deciding the cylindrical power might arise from some effect within the Hartmann sensor 

we then took measurements after doing a series of different tests to try to determine the source. 

After each test I made a plot of the wavefront aberration by constructing a best fit to the 

previously calculated wavefront aberration parameters. Won also designed code to numerically 

integrate the gradient of the wavefront aberration. Figures 8 and 9 are typical samples from our 

following tests. In all our plots and calculated parameters the cylindrical feature was present and 

with approximately the same magnitude. The aberration parameters for the following two figures 

were as follows: 

 

     P: 1.89*10
-4

 

     al: -0.295 

     phi: 0.196  

     C: -0.00159 m
-1

 

     S: -0.00383 m
-1

 

     B: 0.0983 m
-2

 

     be: -0.376 

     A: 5.97 m
-3

 

 

where al, phi, and be represent the angles α, φ, and β in equation 3 (P, S, C, A, and B are the 

other coefficients from that equation). 

 First we rotated the Hartmann plate along with the clamp plate 90 degrees and the axis of 

the cylindrical pattern rotated 90 degrees. The Hartmann plate had been attached to the clamp 

plate using tape on two of the four sides, so we cleaned the Hartmann plate, removing all tape 

and leftover glue, to make sure that the tape was not applying any unusual stresses under the 

temperature change that could be causing the cylindrical effect. However, measurements with the 

clean Hartmann plate still showed the cylindrical effect. We then rotated just the Hartmann plate 

90 degrees and the axis of the cylindrical pattern rotated but only by a small amount, roughly 15 

degrees. Measurements taken after returning the Hartmann plate to its original position showed 

that the axis of the cylindrical pattern also rotated back in the direction of its original position, 

though not completely. Rotating just the invar plate by 90 degrees also did not seem to have an 

obvious effect on the cylindrical pattern which rotated but only by a small amount, similar to the 

result when just rotating the Hartmann plate. 

 



 
 

 

 

  

  

Figure 8: This is a contour plot of the actual wavefront aberration comparing room 

temperature frames with frames at a temperature 10 degrees higher. This plot was  

obtained by numerically integrating the gradient of the wavefront aberration. Note  

the cylindrical nature of the signal.  

Figure 9: This contour plot is a best fit of the wavefront aberration using the wavefront 

aberration parameters. So consequently it has a smoother appearance. The cylindrical shape 

is also clearly noticeable in this plot. 



B. RMS Analysis 

 

 While continuing to run these tests we decided to switch our focus to another problem 

with the rms calculations that had been present simultaneously. As mentioned above, when 

plotting rms as a function of number of frames averaged, rms was theoretically predicted to drop 

with a slope of -0.5. When using our MATLAB routine to calculate the rms, we calculated it 

twice, with and without shuffling the frames before the calculation. When the frames were 

shuffled prior to calculating the rms, the slope would closely match the theoretical prediction, 

however when the frames were not shuffled, the calculated slope would be significantly lower. 

The fact shuffling improved the rms implied that the noise was not purely random and that the 

centroid positions in each frame were not statistically independent events. Since this discrepancy 

between rms values before and after shuffling was present in all previous measurements, we 

decided to not analyze the wavefront aberration until we found the source of the rms problem 

first. It is also possible that the solutions to both problems could be related.  

 Figures 10 and 11 show typical rms plots both with and without shuffling the frames. The 

following are the corresponding rms values after averaging 1, 2, 5, 10, 20, 50, 100, 200, 500 and 

1000 test frames with and without shuffling. 4000 frames were used as reference frames making 

5000 frames total. Without shuffling: 

 

Frames Averaged rms 

1 0.004961805627314 

2 0.004537271715921 

5 0.004208328351279 

10 0.004042641862253 

20 0.003490778156514 

50 0.002924351382593 

100 0.002130578225855 

200 0.001944384005894 

500 0.001687318461522 

1000 0.000881173809942 

 

With shuffling: 

 

Frames Averaged rms 

1 0.004018866673087 

2 0.002724680286563 

5 0.002319477846009 

10 0.001230553835673 

20 0.000767638027270 

50 0.000432681002432 

100 0.000427139665006 

200 0.000270955332752 

500 0.000226521040455 

1000 0.000153760240692 



 
 

Figure 10: rms plot without shuffling. The slope of the linear fit is included in the legend. 



 
 
 

 

 At this point we decided to take measurements using a brass Hartmann plate and thicker 

aluminum clamp and spacer plates, like in the initial Hartmann sensor, since this cylindrical 

component was not detected when using that sensor. Also, since the invar plates are thinner than 

the aluminum plates, they would be more susceptible to having been bent or damaged while 

being manufactured which might also cause the cylindrical effect. Greater diffraction was 

present when using the brass and aluminum set up of the Hartmann sensor causing the 

centroiding routine to detect multiple centroids per spot. Won fixed this by creating a MATLAB 

routine that would blur the spots thus causing the program to correctly recognize spots and their 

centroids. This function can be toggled on and off in the rms and wavefront aberration programs 

by setting “average_pixels” to be true or false. However, this did not alter our unusual rms 

results so we concluded that the source of the problem may be related to the way we take the 

pictures or the environment the sensor is in. 

 To test this we replaced the CCD with a new, unopened and unused camera and took 

more pictures. The analysis of these pictures showed that replacing the camera made no 

difference.  We then decided to take pictures using the new camera but with the invar Hartmann, 

clamp, and spacer plates of the modified Hartmann sensor instead of the brass and aluminum 

Figure 11: rms plot with shuffling. The slope of the linear fit is included in the legend. 



plates. This was to verify that Won‟s coding to smooth out the pixels was not contributing to the 

problem. Since this also did not affect our rms results, this validated Won‟s coding. Won also 

created code that made a contour plot of the log of the rms. This plot made “bad spots”, spots 

where the rms was particularly high, more easily visible. We made contour plots of different sets 

of data, as well as contour plots comparing different subsets of frames within the same set of data 

to see if the “bad spots” were always the same spots. Figures 12, 13 and 14 are plots comparing 

different subsets of “bad spots” and demonstrate that the “bad spots” were not reproducible. 

Similarly we looked at these types of plots to see if at least there were other patterns, such as 

whether or not the number of bad spots increased with time (with later frames), but there did not 

seem to be any obvious patterns.  

 

 

 
 

 

 

Figure 12: This plot shows the “bad spots” when comparing the first 50 frames, the reference set, to 

the next 50 frames. Axes indicate pixel position. 



 
 

 

 

 

 
 

Figure 13: This plot compares the same reference set to the following set of 50 frames. 

Some bad spots shown in Figure 12 seem to carry over, but not all. Also, significantly more 

bad spots appear in this figure. Axes indicate pixel position.  

Figure 14: This plot compares the same reference set to the following set of 50 frames. Axes 

indicate pixel position.  



 We also decided to try manually subtracting the background noise instead of using the 

built-in MATLAB method. To subtract this background noise we took pictures while completely 

covering the camera‟s aperture and then subtracted the average of this signal manually. This is 

the same signal being subtracted if “Manual_bg” in the rms code, mentioned above, is set to be 

true. However, more measurements revealed that this did not seem to affect the rms results. We 

also modified the way the average prism was removed from each frame by using the following 

routine: 

 

(1) Centroid all spots 

(2) Calculate the average of all centroids in frame i,  

(3) Subtract [ ] from all centroids in ith frame, i ≠ 1. 

(4) Average centroids for each spot over N frames, where N is the total number of frames 

  

This more precise and time consuming code, however, did not seem to impact the rms results 

either. We also checked if this method of removing prism affected the wavefront aberration 

results, but it did not. 

 Since the Hartmann sensor was in an open set-up on a lab table whereas the initial 

Hartmann sensor was tested inside a tent that protected it against air currents, we decided to test 

how sensitive the Hartmann sensor was to air currents. I took 5000 frames, which takes about 3.5 

minutes, and gently waved a piece of paper next to one of the heat sinks of the camera for the 

last minute of measurement. Using Won‟s coding we constructed plots of the centroid drift for 

specific spots and plots for the average centroid drift, shown in Figures 15-18. The effect of the 

induced air disturbance in these plots is obvious. 

 Since the simple air disturbance had such a great affect on centroid position and I had 

been fanning by one of the heat sinks we decided to take measurements without the heat sinks. 

This would help determine whether the acoustic noise from the air currents themselves or the 

disruption they caused in the convective cooling process had the greater effect on centroid 

displacement. The rms was still high before shuffling though, indicating that this effect was 

independent of the heat sinks. 

  

Frames Averaged rms 

1 0.003722961917501 

2 0.003722961917501 

5 0.003044823304032 

10 0.002884934135984 

20 0.002748699189918 

50 0.002538889952250 

100 0.002270514510127 

200 0.002152777803032 

500 0.002401487295145 

1000 0.001062481663045 

The slope of the linear fit was approximately -0.13, much lower than the theoretically predicted 

value of -0.5. 



 
 

 

 

 

 

 

Figure 15: x drift of the centroid of spot 145. The numbers in parenthesis is the location of the 

centroid in pixels. The y axis represents displacement in units of pixels, and the x axis represents 

frame number. The effect of the fanning can be clearly seen in increase in rms for the last 1000 

frames. 

Figure 16: y drift of the centroid of spot 145. The y axis represents displacement in units of 

pixels, and the x axis represents frame number. Once again, the effect of the fanning can be 

clearly seen in increase in rms for the last 1000 frames. 



 
 

Figures 17 and 18: Average centroid drifts in x and y directions. y axis is displacement in units of pixels and x axis is frame number. The disturbance caused 

by the air fanning is most obvious in these plots. 



 Conclusion 
 

 Although we did not find the source of the cylindrical power or the cause of the 

discrepancy in rms values calculated with and without shuffling beforehand, we did 

successfully conduct tests on the Hartmann sensor on a more in-depth scale than had been 

done previously and narrow down the variables that could factor into these problems. We 

found that the cylindrical component was not a feature of heating method and that 

removing the average prism value did not affect the cylindrical component. We also 

found that although the axis of the cylindrical component rotated 90 degrees when we 

rotated the Hartmann plate and clamp plate together 90 degrees, it rotated a very small 

amount when we rotated just one of those plates 90 degrees.  

 For the rms analysis we found that all the factors just mentioned did not affect the 

need to shuffle the frames in order to achieve an rms close to the theoretical prediction. 

We also found that switching back to the brass and aluminum set-up of the Hartmann 

sensor, switching CCD cameras, modifying the code for removing average prism, 

subtracting the MATLAB created background noise, and removing the heat sinks did not 

affect the rms. We did discover however that there were irregular spots where the rms 

was particularly bad although we could not identify a pattern in their occurrence. 

Similarly the centroid displacement of certain spots and the average centroid 

displacement were much larger than expected, and that slight air disturbances could have 

a significant effect on centroid displacement.  

 Future experiments should include calculating rms after taking data with a tent 

enclosing the Hartmann sensor to prevent air currents from interfering with 

measurements. Moving the Hartmann sensor to a different lab table and room to see if the 

rms problem is a feature of the environment, such as electrical noise from the outlets, 

should also be done. Also acquiring a new frame grabber could test if the current frame 

grabber is the source of the problems. 
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