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Abstract: 

 One of the most important aspects to the LISA mission is the ability to put the 

Test Mass in drag free motion. In order to achieve this pure free fall motion, capacitive 

sensors will measure the position of the test mass relative to the housing. Many stray 

forces can cause accelerations on the test mass, such as cosmic ray charging, thermal 

gradients, and the electrostatic coupling from building the sensors around the test mass. 

This paper discusses some measurements and possible solutions to these stray forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

The Laser Interferometer Space Antenna (LISA) will consist of 3 satellites in 

triangular configuration orbiting the sun. 
1 

The purpose of these spacecraft is to detect the 

gravitational wave strain of binaries with frequencies from 3 mHz to 0.1 Hz. This wave 

strain will expand and contract the distances of the test masses within each spacecraft. 
2
Each satellite will have two test masses, each being the end mirror for an interferometer. 

These masses will configured at an angle of 60 degrees from each other and linked to 

another mass 5 million km away. LISA will use a system of lasers to create an 

interferometer, measuring the distances between the two masses facing each other. For 

gravity to be the only force affecting these masses, they must be in perfect free fall, 

which will be provided by the spacecrafts μN thrusters‟ ability to keep the test mass 

centered inside the housing along the interferometer axis. 
3 

“Achieving the LISA 

gravitational sensitivity requires the test masses are in free fall with residual accelerations 

below 3 fm/s
2 

/√Hz.” 
4
In order to accomplish this task, “capacitive sensors will provide a 

readout of the relative position of the satellite to the freely flying test masses.” One 

obstacle is being able to deal with forces that can affect this free fall. This paper will 

name some of those disturbances as well as discuss how to measure and compensate for 

coupling of the mass to the satellite, charges on the test mass and a change in temperature 

of the system. 

 

 The test mass for the LISA mission will be a gold/platinum cube, 46 mm on each 

side, and 2 kg in mass. The torsion pendulum test mass is only for ground testing. The 

torsion pendulum test mass is gold coated aluminum of approximately 100g. This mass is 

mounted on a torsion pendulum with a 1 m in length and 35 μm in thickness fused silica 

fiber. Within the 3 dimensions of the cube, capacitive sensors measure the relative 

position to the housing. 
5
Surrounding the test mass will be the electrostatic position 

sensors or a gravitational reference sensor (GRS) to measure the difference in capacitance 

between the test mass and opposing pairs of electrodes, which will give the distance since 

capacitance is inversely proportional to the distance. Using these sensors both the 

translational and rotational motion can be measured by utilizing two electrodes on each 

face. For this measurement, a 100 kHz frequency is pumped into the injection electrodes 

shown in Fig 1. This produces a measurable current that is sent to a transformer. One can 

see by the diagram that if the capacitance is the same, then the incoming currents will 

also be the same and cancel each other. 



 
Fig 1. 100 kHz voltage applied to the test mass. A change in capacitance occurs when the test mass moves. 

The current is measured from each side across the transformer. 

 

To measure translational motion, the position of the two sensors on the face in which the 

dimension of motion is taking place must be summed. The difference of these two 

capacitors sensors under translational motion only will read 0. Under rotational motion of 

the test mass, the difference of the sensors on the same face will give a measurement of 

rotation, while the sum would read 0.  

 

 
Fig 2. Capacitive sensors change in capacitance as the distance changes. This measures the movement of 

the pendulum. 

 

These angle measurements are crucial in the measuring of the torque. In space, for the 

LISA and LISA Pathfinder, there are no torques to be measured. In flight, forces change 

the distance between the free falling test mass and the sensors. Most sources of force 

noise also produce torque noise in the torsion pendulum. Force noise can be measured in 

terms of torque during torsion pendulum measurements. It must also be noted that there is 

also an autocollimator readout to measure the torsion angle. The angle, φ, is measured 

overtime and applied to the following equation: 
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6 

Where I is the moment of inertia of the cube, b is the damping coefficient and c is the 

restoring torque constant. The measurement of the angle, along with its derivatives, will 

give the torque being applied on the pendulum. 

 

 Before diving deeper into torque measurement, it may be beneficial to explain the 

source of these torques being applied to the system. 
4
There are many ways in which “DC 

electric fields can combine with test mass charging and thermal dielectric voltage noise to 

create significant force noise.” The arrival of random cosmic rays induces charge on the 

test mass. These changes arrive in a random walk process, but are still statistical in 

nature. Also, creating a gold/platinum alloy creates different work functions in the metal. 
4
Cutting metals also creates different crystal faces with different work functions, but this 

effect is small and not likely to be a significant problem.  Thermal gradients that appear 

across electrodes can cause noise as a radiometer effect. Under low pressure 

circumstances, higher temperatures encourage movement of molecules that in turn 

transfer momentum to the test mass. Radiation pressure, photons, can also transfer 

momentum.  

  

 There is also the issue of weak coupling (k=mωp
2 

), within the system. Internal 

forces from building something around the test mass create coupling „stiffness‟ with a 

very weak spring constant. The μN thrusters on the LISA satellites will be used to create 

a free falling environment, but will also create these disturbances. 
6
The relative motion of 

the satellite will create a coupling, and “the most significant source of spring like 

coupling (is) the AC voltage bias used for capacitive position readout.” Physical 

attributes of the pendulum can also cause disturbances. The surface of the pendulum 

could become contaminated before set in a vacuum changing the work functions and 

magnetic properties of the mass. Also, outgassing—the slow release of molecules trapped 

inside the mass—could contaminate the vacuum and interfere with measurements. All of 

these problems will potentially create noise in the system measurements and learning to 

deal with these is crucial to LISA success. 

 

 If the noise comes in very fast with a high frequency, it does not cause a problem 

because it can be easily averaged out. If the noise is of a very low frequency, it will also 

have little effect. We are interested in the amplitude of an AC signal, which can still be 

seen well under slow noises. LISA is dominated by forces in its noise budget from 0.1 

mHz to 3 mHz, but we are interested in all sensitivity levels from 0.1mHz to 0.1Hz.  

When the noise is at the frequency we want to measure, an error occurs. Though the noise 

follow a random walk process, they still obey statistics, so an expectation value can be 

found. Thus we may take the power spectral density to capture the frequency of this 

stochastic process. We can use the Fast Fourrier Transform (FFT) of the autocorrelation 

function to separate the noise and identify the signal we wish to measure. Using this 

method, most noise can be subtracted from the signal. 

 

 Before moving to the next measurement, it is necessary to express torque 

electrostatically. In the system the difference of potentials is important. Thus the sum of 

charges can be expressed as: 



                                        (2) 

Allowing the sum to be expanded this equation simplifies. 

                                               (3) 

Solving for the voltage on the test mass gives: 

    
 

    
 

      

    
                                   (4) 

Using the equation for potential energy and taking the derivative to find the force yields 

the following equations: 
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Or in terms of torque and angle φ: 
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       One of the problems mentioned earlier was the charging of the test mass from cosmic 

sources. In order to deal with these charges there must be a way to measure the charge on 

the test mass. Plugging (5) into (7) yields: 

     
   

       
 

    
 

      

    
              (8) 

In order to know the force on the pendulum, we must know the charge on the mass and 

the difference of voltages, but measuring the charge is no direct task. If the voltage were 

to oscillate at some chosen frequency, then the value of the charge can be measured, and 

therefore the force can be calculated. 

 

 In the experimental setup, a modulation voltage (Vmod) of 9.5V is applied on the 

four Z electrodes at 3 mHz shown in Fig 3. This method simulates a charge on the test 

mass by creating an electric field and a potential difference between the mass and the 

surrounding electrode housing. The x electrode senses a buildup of charge. 

 



 
 
Fig 3: A 3 mHz modulation voltage induces a charge on the test mass.  

 

 In experiment, this changes our equation for torque. Summing the term out for 

    over the 3 axis yields: 

    
 

    
 

      

    
 

      

    
 

       

    
 

                

    
    (9) 

For easier computation the DC component will be known as: 
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The AC component will simply be summed over its 4 electrodes to give: 
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Now the torque can be expressed as: 
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Now, this can be separated into a DC component and parts dependent on 1ω and 2ω. 
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When the test mass is centered  
   

    is equal to zero.   
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Other measurements can be made to help identify and reduce disturbances in the 

test masses. By moving the sensor back and forth in the X, Y plane and rotationally about 

φ, the torque by the coupling effect can be calculated. During this measurement a motor 

moves the sensor in a certain direction, and the position of the pendulum is recorded 

(using the same position/rotation measurement in equation 1). The signal amplitude of 

the measured angle is broken into sine and cosine components for both the 1ω and 2ω 

signal of the test mass modulation voltage. Labview was used to run the program of 

moving the motors and Matlab was used to analyze the data. 

 
Fig 4: The motor scan can be seen clearly in the Y direction (denoted Vy). The X direction (η) and φ are 

also shown. 



 
Fig 5: Sine and Cosine components of signal amplitude at 1 ω during a motor scan in the Y direction. 
Using equation 1 this signal amplitude can be converted into a torque in terms of sines 

and cosines that is measured by taking the first and second derivative of the data points 

measured. 

 
Fig 6: Components of sine and cosine torque of the motor scan in the Y direction. 

 

With these measurements, the dependence of torque on the angle of motion can be 

calculated as seen here by the sine component of torque vs. movement in the Y direction. 



 
Fig 7: Torque as a function of distance in Y. Shows the slope as the coupling coefficient 

 
Fig 8: The coupling coefficient for an X motor scan shown at 1ω. 

 



 
Fig 9: The coupling coefficient for X motor scan appears to be nearly 0. Same applies for Y motor scan. 

 

Expanding the force out as a sum one can write the force as 

     
  

  
                                        (17) 

Where  
  

  
 is the spring constant calculated through this measurement. In the case of the 

torsion pendulum,  
  

  
    

  

  
 are relative to 1ω and 2ω frequencies of the modulation 

voltage. 

 

Equations 15 and 16 show why the X and Y motor scans will only give 

dependencies at 1ω and φ motor scans have dependency on both 1ω and 2ω. All terms in 

N2ω are dependent on 
   

  
 which is changed drastically in the φ scan. X and Y motor scans 

show dependencies at 1ω because they have terms that do not depend on 
   

  
  This 

dependency can be seen in Fig 11. 

. 



 
Fig 10: φ motor scan. Correlation coefficients at 1ω frequency. 

 

 
Fig 11: φ  Dependency shown on 2ω torque. 
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 The measured 1ω signal is proportional to the coupling charge (
  

  
). The torque 

caused by the charge is what we want to null. In the LISA mission (
  

  
 ), keeping the test 

mass centered, is crucial for drag free motion. By using these equations, torque‟s 

sensitivity on charge (or on test mass potential) can be found. In order to remove any 

torque on the test mass, a compensation voltage is applied to the four X electrodes. When 

the test mass is centered, the second term in equation 18 disappears. This is due to the 



 
   

    being zero when centered. Even if the test mass is not centered, the second term is 

dependent on 2ω, which when made very small, causes this term to fall away. In turn the 

equation is simplified to: 

 
  

  
     

   

  
                                           (19) 

 

Where    
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The results of the motor scans can be seen in the measuring of Δφ. The 

importance of measuring the Δφ is to be able to null the torque on the pendulum. This is 

discussed mathematically in the paper. For a motor scan done on the 12
th

 of July dN/dη 

was found to be -38.61 pN and dN/dY was 941.97 pN which are quite different from their 

values found on May 27
th

 of -61pN and 479 pN respectively. This means that the spatial 

variation in the electrostatic field, that produces these dependencies, changed overtime. 

Looking at the Δφ information with the old dependency measurement it is clearly 

noticeable that the motion in Y is not subtracted from the Delta phi data. The new values 

for the correction coefficients look much better. 

 

 
Fig 12: With the old correction data, the corrected data seems dependent on the Y correction. 



 
Fig 13: The same data with the new correction coefficient shows the Y correction data being subtracted 

from the Corrected data. 

 

  

 

 

           A compensation on the four X electrodes voltage is used to null the Δφ, and in 

turn, diminish the torque on the pendulum. Using a program in Labview this 

compensation voltage is changed over time. This change in DC bias reveals the 

compensation voltage that best removes this Δφ. An example of a DC bias scan shown in 

Fig 14 shows the compensation voltage going from -8mV to 12 mV at 4 mV steps of 

4,500 seconds each. This scan reveals that the ideal compensation voltage is -10.43 mV. 

The compensation voltage being applied at the time of the scan gave a sum of -10.95 mV 

which gives us a difference of about half a mV. We also found that by only modulating 

with the top or bottom electrodes, instead of all four, will change the value of the ideal 

compensation voltage that nulls the 1ω term.  



 
 Fig 14: Signal amplitude changing as the compensation voltage changes. 

 
 Fig 15: Torque on the pendulum during the compensation voltage scan. 



Fig 16: Torque versus compensation Voltage.  

 

Given values for Vcomp of -6.4 mV and 7.6 mV for using the East and West 

faces of X face respectively, the compensation voltage is missed by .6mV. This slope is 

calculable from the principles of equation 15.  

 

These are good measurements considering the compensation voltage could have 

underlying drift of more than .5mV over the 9+ hours of data collection for these 

experiments. Beforehand, the data was not being digitized correctly. The digital to analog 

converter has 16 bit resolution from -10.24 to 10.24, so the compensation voltage was 

rounded to 313μV. In order to solve this problem a code was written to digitize the 

compensation separately for each voltage applied. This resulted in a much better linear 

fit. 

 

Another measurement included varying the temperature within the test mass 

housing. The Δφ data was also measured over time to monitor possible fluctuations. A 

program was created in Matlab to plot the Δφ time series data and the φ data time series 

with the temperature data. Measurements were taken under different temperatures and 

changing temperature. While the temperature and Δφ have no obvious correlation, the φ 

time series and temperature have a noticeable dependence. This can be seen in Figure 16 

as the temperature is dropped from 30
o  

C to 25
o 
C. 



 
Fig 17: φ time series data ploted with the temperature time series data.  

 

In order to analyze this data, a program was written to interpolate the temperature 

data in the same time series as the phi data. Then a least square fit was applied in terms of 

temperature. 

     
  

  
                                (20) 

 

Where 
  

  
was nearly always 30μRad  3μRad 



 

 
Fig 18: φ data interpolated into the same time series as change in temperature. The bottom graph is the 

deviation of this interpolation model from the actual φ data. 

 

 The data collection for this measurement also possessed a fundamental flaw. As 

the temperature changed in the housing, it caused a translation on the test mass. Also, a 

change in the temperature changed the frequency that gave the best Q factor for the 

modulation. 

 

 In conclusion, there are many noise sources that yield a DC bias on the test mass. 

Ground based testing at the University of Trento will help prepare LISA and LISA 

Pathfinder. By taking measurements of these noise sources, the electrostatic and magnetic 

properties of the test mass. The sources of force noise can be measured in different ways. 

We can deal with electrostatic coupling by moving the test mass and finding the coupling 

coefficients of the test mass with the sensors. The forces caused by the charging up of the 

test mass by cosmic sources can be removed by making the Δφ go to zero by an applied 

compensation voltage. The temperature was also shown to affect the angle φ of the 

pendulum.  
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