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Abstract

The detection of gravitational waves is one of the most anticipated events in modern science. Postu-

lated by Albert Einstein in his 1915 Theory of Gravity, these phenomena are thought to hold important

insights into the workings and origin of our universe. Many sources of gravitational wave signals are

being explored in an e↵ort towards first detection, one of these being highly magnetic neutron stars

known as magnetars. We use the numerical code PLUTO to simulate magnetars and their development

over Alfven time scales, in order to determine whether they have potential to produce detectable signals.

We investigate two field configurations and their evolutions, finding that the wave strain produced is

su�cient to make certain neutron stars candidates for LIGO.

1 Introduction

1.1 Gravitational Waves

Albert Einstein first postulated gravitational waves as part of his theory of gravity. Gravitational waves,

as we understand them, arise when a massive body undergoes an acceleration, provided the motion is not

spherically or cylindrically symmetric, and are the result of a time varying quadrupole. These waves are in

the form of three types of signals:

1. Inspirals, which describe a signal increasing in frequency as two objects coalesce, such as from a system
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of binary black holes or neutron stars

2. Bursts, which characterize a short non-repeating signal, and are the product of such things as super-

novae explosions

3. Continuous Signals, which are steady and consistent and from such sources as rotating asymmetric

stars.

Though gravitational waves are no challenge to produce, detection is far from trivial. For one, their wave-

lengths are on the order of kilometers long, requiring interferometers that are also kilometers long for de-

tection. Additionally, the amplitudes of the strongest signals we expect to observe on Earth will have a

parameter “wave strain” (h), which describes the amplitude, at h = 10�20 or less. “This is enough to distort

the shape of the Earth by 10-13 metres, or about 1% of the size of an atom. By contrast, the (nonradiative)

tidal field of the Moon raises a tidal bulge of about 1 meter on the Earth’s oceans.”(Caltech). Clearly, these

signals are so weak that it would take an extraordinarily dramatic event, such as the collision of two black

holes, to produce something detectable with our current apparatuses.

Gravity has many interesting properties, reaching far beyond what was originally formulated by Newton.

“...According to Einstein’s general theory of relativity, [gravity] is how mass deforms the shape of space.

Einstein realized that the deformation can propagate throughout the Universe. If you could watch a gravita-

tional wave head-on as it moves toward you, you would see it alternately stretching and compressing space,

in the updown and leftright directions.” (Nature).

The detection of these waves would be important for science in several respects. For one, it would confirm

Einstein’s theory of gravity, which, while universally accepted as the formalism that governs large massive

bodies, lacks this critical experimental verification. More importantly, being able to detect gravitational

waves will open up a new medium through which we can image the universe. This is particularly interesting

because gravitational waves can pass through barriers unaltered, whereas light, our main method of viewing

the universe, would be scattered. This will allow us to see parts of the Universe that were previously invisible,

such as the interiors of stars.

We will now investigate where these gravitational waves arise mathematically.

To show how gravitational plane waves arise mathematically, we look to the weak-field approximation,
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in which we decompose our metric into the flat minkowsi metric and a small perturbation.
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Computing our Riemann, Ricci and thus Einstein Tensors, we obtain:
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In our weak field approximation, g

µ⌫

= ⌘

µ⌫

+ h

µ⌫

is not uniquely defined– our perturbation can be

di↵erent in other coordinate systems. To address this and eliminate degeneracy, we must fix a gauge. In this

case we will be choosing the transverse gauge, which is analogous to the Coulomb gauge in electromagnetism.

We write h

µ⌫

as a decomposition of its trace and trace-free parts:

h00 = �2� (7)
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In this gauge, our Einstein tensor becomes:

G00 = 2r2
 = 8⇡GT00 (10)
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In weak field limit, we take T

µ⌫

= 0. We obtain the equations r2
 = 0, r2
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We use h

TT

µ⌫

for its convenience when comparing with other resources. It is purely spacial, traceless and

transverse. Our equation of motion is then

⇤h
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= 0 (11)

and it follows that
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It is from this equation that our plane wave solutions arise. Looking at equation 12, we see that a solution
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h

TT

µ⌫

= C

µ⌫

e

ik�x
�

(13)

where C

µ⌫

is a constant, symmetric and purely spacial tensor, and k

� =
�
!, k

1
, k

2
, k

3
�
is the wave vector.

By plugging our solution back into the equation of motion, we obtain the condition k

�

k
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that the plane wave is a solution if the wave vector is null. To ensure that our perturbation is transverse,

we require
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To simplify our solution, let’s consider a wave traveling in the x

3 direction:

k

� =
�
!, 0, 0, k3

�
= (!, 0, 0,!) . (16)

We can determine that k3 = ! because our wave vector is null. We can from there derive that C3⌫ = 0 and

thus that the only non-zero components of our symmetric, traceless C
µ⌫

are C11, �C11, C12 and C21. Thus,
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we see in general that

C
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This tells us that for a plane wave in this transverse gauge, only two components (outside of the frequency),

C11 and C12 characterize the plane wave behavior. Now that we better understand the mathematical origins

of gravitational plane waves, we will discuss the research being done to detect them.

1.2 LIGO

Figure 1: Here, the strain sensitivity of LIGO is shown as a function of frequency.

(https://www.advancedligo.mit.edu/summary.html)

The Laser Interferometer Gravitational-Wave Observatory, or LIGO, is one of the leading collaborations
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in the gravitational wave hunt. The LIGO experiment uses a pair of ground based interferometers in the

United States, one in Livingston, Louisiana and the other in Hanford, Washington to isolate correlated

signals, some of which they hope to identify as originating from gravitational waves. The mirrors are 11kg,

the arms 4km long and the laser is powered at 10 Watts. LIGO can measure frequencies between 10Hz and

10,000Hz and a wave strain (h) of roughly 10�23(LIGO).

With the introduction of advanced LIGO in Fall of 2015, the laser power will increase to 200 W, the

test mass objects will be almost one third larger in diameter, and the frequency cuto↵ will move from 40Hz

down to 10Hz.The observable volume of space of advanced LIGO is 1000 times greater than that of initial

LIGO, allowing better access to potential sources (MIT).

2 Magnetic Fields in Neutron Stars

2.1 Magnetic Field Stability in Ap/Bp Stars

Ap, Bp stars are peculiar A and B stars which have an abundance of certain metals and a much slower

rotation than typical A, B stars. They have large magnetic fields ranging from 0.03-3 tesla. Several models

of these stars have been created, though they fail to describe many of our observations accurately, which

suggests that they have a complex field structure. Much of the work on stable fields in these stars comes

from Dr. Jonathan Braithwaite, who uses numerical simulations to look at stability of Ap stars on Alfven

time scales, or the time scale on which a magnetic wave crosses a star.

To examine field configurations and features in these types of stars, the procedure followed is generally

the same: begin with some reasonable initial state based on what is known from observation and time

evolve it numerically. If we see the magnetic field settle into a stable configuration after several Alfven time

scales, it is considered stable. By this method, the same stable field configuration is always found: a nearly

asymmetrical torus inside the star with toroidal and poloidal components of comparable strength. The torus

can be either right or left handed depending on initial conditions. These general configurations are not

a↵ected by initial conditions, but the surface field strength does depend on them.

Much of the work done on fields in Ap and Bp stars can be applied to highly magnetized neutron stars,
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Figure 2: Stable magnetic fields have both toroidal and poloidal components.

which have exciting applications to gravitational wave detection.

2.2 Neutron Stars and Magnetars

Neutron stars are some of the most dramatic phenomena in our universe. With a radius on the order of

10km, they can be twice as massive as our sun. Magnetars are highly magnetic neutron stars, with fields

that can reach above 1015 Gauss. This is particularly impressive when one considers that the magnetic field

of the Earth is under 1 Gauss. These strong magnetic fields deform the star as a result of the Lorentz forces

they exert

~

F

Lorentz

= q~v ⇥ ~

B. (17)

Energy is released by some form of rearrangement of the magnetic field configuration in the star. These

magnetic fields were probably already present at birth. They release energy over a timescale of around 104

years, which is much greater than the Alfven time scale over which unstable fields evolve (0.1s). They have

ample time to either evolve into a stable configuration or decay to nothing before being frozen in by the

crust. In general, it has been found that an arbitrary unstable initial field does not decay completely, but

gets stuck in a stable equilibrium at some magnitude (Braithwaite and Nordlund 2006).

For gravitational wave detection it is important to know what the magnetic field configuration in a

neutron star is. If the magnetic and rotational axes are not aligned, the deformation due to the magnetic
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Figure 3: The evolution of a magnetic field in a stable Ap star at times t = 0 days (top row figures) 0.18

days (middle left figure), 0.54 days (middle right figure) and 5.4 days (bottom row figures), as calculated by

Braithwaite and Nordlund (2006).
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field will result in asymmetrical rotating. This will create a time varying quadrupole and consequently

gravitational radiation.

The wave strain (h) resulting from such a configuration is fairly straightforward to calculate. We first

calculate the moments of inertia (I). From there we can obtain a quantity known as ellipticity (✏), which is

directly proportional to h.

✏ =
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Here, I
xx

and I

zz

are the moments of inertia with respect to the rotational and magnetic axes respectively.

Though we have observed 2,000 neutron stars in our Milky Way, our targets for gravitational wave emis-

sion are newly born stars. This is because they will have periods that correspond to detectable frequencies,

unlike the magnetars we know of which have frequencies too low for LIGO to detect (below 10Hz). As these

young stars emit gravitational radiation, they lose energy causing them to spin down below what LIGO can

see.

2.3 Alfven Time

The Alfven crossing time is the time it takes for a magnetic wave to cross a star. This is the time scale that

we are interested in for our simulations, as it is the time scale on which either the star will stabilize or our

simulation will break down and no longer be able to run. It is straightforward to calculate the Alfven speed:

v

A

=
B0p
µ0⇢0

(21)

and from there the Alfven crossing time:

t

A

=
d

v

A

(22)

Noticing that v
A

/ 1p
⇢0
, we see that waves will take infinite time to propagate in a vacuum. Thus, we can

anticipate problems calculating with ⇢ = 0. It is critical to consider this when modeling a neutron star, as

our code will have di�culty processing a perfect vacuum beyond the boundary of the star.
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2.4 Magnetohydrodynamic Equations and Flux Freezing

To consider the problem of gravitational emission from a magnetic neutron star, it is important to be

acquainted with the magnetohydrodynamic equations. The ideal MHD equations are below, which are com-

posed of the HD equations and Maxwell’s equations:

MHD Equations:

@⇢

@t

+r · (⇢~v) = 0 (23a)

P (
@~v

@t

+ ~v ·r~v) +rP � p~g � 1

µ0
(r⇥ ~

B)⇥ ~

B = 0 (23b)

@P

@t

+ ~v ·rP + �Pr · ~v = 0 (23c)

@

~

B

@t

�r⇥ (~v ⇥ ~

B) = 0 (23d)

r · ~B = 0 (23e)

These are a set of five partial di↵erential equations describing the physical properties of plasma. These

are particularly applicable to astrophysics and cosmology, as 99% of the baryonic matter content of the

universe is made up of plasma.

From these equations, we can see mathematically how permanent magnetic field lines can become frozen

into the crust of the star through a process known as “flux freezing”. This concept is important to our

discussion as it explains why magnetars can retain their high field strengths.

We begin with MHD Ohm’s Law

~

E + ~v ⇥ ~

B = 0 (24)

Next we recall Faraday’s Law:

� =

Z

S

~

B · ds (25)
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Di↵erentiating Faraday’s Law in two parts and applying Stokes Theorem, we get:
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Combining our two equations back together, we find

(
@�
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Recalling that

~

E + ~v ⇥ ~

B = 0 (28)

we see,

@�

@t

= 0. (29)

From this, we can determine that the flux remains constant at every contour, and thus the field lines move

with the plasma. They are ”frozen in”!

3 Methods and Results

3.1 PLUTO

“PLUTO is a freely-distributed software for the numerical solution of mixed hyperbolic/parabolic systems

of partial di↵erential equations (conservation laws) targeting high Mach number flows in astrophysical fluid

dynamics. The code is designed with a modular and flexible structure whereby di↵erent numerical algorithms

can be separately combined to solve systems of conservation laws using the finite volume or finite di↵erence

approach based on Godunov-type schemes. Equations are discretized and solved on a structured mesh that

can be either static or adaptive”(PLUTO-cite better). PLUTO is a C based code employing the MHD

equations.

A major drawback to PLUTO is that it does not solve the Poisson equation. Rather, the user is required
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to manually enter in appropriate gravitational potentials. For instructions on how to set up PLUTO on a

Mac computer, see Appendix 1.

For my work, PLUTO was used to model a stable neutron star as an n=1 polytrope, first in hydrostatic

equilibrium and then with addition of magnetic fields. The code is used in conjunction with the program

VisIT, which turns the numerical simulations into visualizations. We used a grid with 20 grid points in the

radial, theta and phi directions for our simulations, to provide enough resolution to extract useful information,

but still limit computing time.

3.2 Polytropes

Many stars are well modeled as polytropes, and thus are described by the polytropic equation of state:

P = K⇢

1+1/n
. (30)

We are interested in examining the stability of neutron stars over several Alfven time scales. To determine the

initial conditions that will result in a stable star, we begin by considering a star in hydrostatic equilibrium,

balancing F

Gravity

and F

Pressure

.
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dr

= �⇢(r)Gm(r)

r

2
(31)
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as the mass contained within radius r. Taking the divergence of equation 31 and plugging in equation 32,

we obtain:

1

r
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d
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We insert our polytropic equation of state, and with the following change of variables:

r = ⇠↵
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c

where ↵
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This gives us a greatly simplified expression, known as the Lane-Emben Equation:

1

⇠

2

d
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(⇠2
d⇥

d⇠

) = �⇥n (35)
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with initial conditions ⇥(0) = 1 and ⇥0(0) = 0.

For the general case of an unspecified n, the Lane-Emden equation cannot be solved analytically and, rather,

needs to be tackled numerically. For these instances, a numerical solver has been written in C for the

equation, which employs the fourth-order Runge-kutta method. To use this, we break our second order

di↵erential equation into the following system of two first order equations:

d⇥

d⇠

= � z

xi

2
(36a)

dz

d⇠

= ⇥n

⇠

2
. (36b)

We can rederive ⇢ and P from the results. The full code can be found in Appendix 2.

N=1 Polytrope

Neutron stars are best modeled as n=1 polytropes. Fortunately, the n=1 case of the lane-emden equation

be solved analytically. We take

P = K⇢

2 (37)

as our equation of state. Then, the Lane-Emden equation becomes

1

⇠

2

d

d⇠

(⇠2
d⇥

d⇠

) = �⇥ (38)

We obtain as a solution

⇥(⇠) =
sin(⇠)

⇠

(39)

and returning to our original variables, find our initial conditions in ⇢ and P to be:

⇢(r) = ⇢

c

sin(⇡r/R)R

r⇡

r < R (40a)

P (r) = K⇢(r)2 (40b)

For a star of radius R=10km and mass M=1.4M�, we obtain constants:

⇢

c

= 2.2 ⇤ 1015g/cm3 (41)

K = 4.25 ⇤ 104g�1
cm

5
s

�2 (42)
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Figure 4: An evaporating polytrope.

Giving PLUTO solely these initial conditions will, as expected, result in a star that evaporates, as seen in

figure 4.

This is a positive first result, for it allows us to see that the code is behaving how we expect.

The next step is to introduce an appropriate gravitational potential.

Gravitational Potential

To prevent the evaporation of our star, we need to introduce a gravitational potential. Giving PLUTO a

large potential at random, in order to test the code and ensure it is working appropriately, we as expected

find a collapsing star, as shown in figure 5.

Figure 5: A collapsing polytrope

To find the appropriate potential for our n=1 polytrope, we begin with the Poisson equation.

1

r

2

d

dr

(r2
d

dr

�) = 4⇡G⇢ (43)
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PLUTO does not have the machinery to solve the Poisson equation, and thus it is our job to derive the

gravitational potential and manually type it into the code. To do so, we recall our equation for density

⇢ = ⇢csin(⇡r/R)R
r⇡

, which we use in the Poisson equation to solve for the potential.

� = 4G⇢
c

R

Z
dr
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2
[

Z
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To avoid a singularity at R=0, we need to take C1=0. Matching conditions at the boundary, we obtain

C2=
�M

4R⇢c
. After solving for constants, we still have 1

r

behavior at the center, which can be remedied by

taking the limit of sin(⇡r/R)
r

as r approaches 0, which is ⇡

R

, and replacing it in our expression for �0. We

now have our potential:
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3.3 Hydrostatic Equilibrium

With these initial conditions, we are able to model a neutron star (as an n=1 polytrope) in hydrostatic

equilibrium.

Initial Conditions:

⇢(r) = ⇢

c

sin(⇡r/R)R

r⇡

r < R (47a)

P (r) = K⇢(r)2 (47b)
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Figure 6: The density and velocity profiles, respectively, for a star in hydrostatic equilibrium

Through time scales of 1s in PLUTO, we see no changes beyond small oscillations in both the density

and velocity profiles. The velocity profile makes sense physically: we expect some very slight movement in

the interior that is essentially constant throughout.

Once our star is stable, we introduce a magnetic field.

3.4 Magnetic Field

As mentioned previously, for gravitational wave detection it is critical to understand the magnetic field

configurations of stable stars. This will allow us to determine how they deform and, if rotating, what

wave strain we can expect as a consequence. Though rotation is critical for the star to emit gravitational

radiation, we will neglect its e↵ects as they pertain to the magnetic field, in order to simplify our model and

calculations. This is a reasonable approximation, as magnetars rotate slowly.

To construct a magnetic field, we closely follow the work of Haskell, Samuelsson, Glampedakis and

Andersson 2008. We begin with the equation for magnetohydrostatic equilibrium.

r⇢
P

+r� =
(r⇥ ~

B)⇥ ~

B

4⇡⇢
=

~

L

4⇡⇢
(48)

Where ~L is the Lorentz force, and the gravitational potential � obeys the Poisson equation. From Maxwell’s

equations, we know that,

r · ~B = 0 (49)

and that we are considering a barytropic equation of state, meaning ⇢ = ⇢(P ). Taking the curl of equation
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48, we get
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] = 0 (50)

which is a constraint our field must satisfy. Whichever field is arrived upon for the interior of the star must

also match the exterior solution for a field:
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We thus have constraints on our initial field configurations. We begin by exploring a purely poloidal field,

using the dimensionless radius y = ⇡r

R

. Inside of the star, the magnetic field is described by:
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B
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where B

s

is our maximum field strength. Taking l = 1, we obtain our conditions outside of the star:
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~
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=
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s
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3
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2r3
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~

B

�
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We use a maximum field strength of 1017G, which is on the higher end of what we expect for these stars.

This reduces our Alfven time and allows for simulations to complete more rapidly. When this is run without

any rotation, no toroidal component develops and the code stops running after thirteen time steps. When

a rotation of 106cm/s is introduced, the code can run for twice as long. We find, in this instance, that our

poloidal field becomes unstable and the code can no longer run after 2.6 ⇥ 10�5 seconds. However, this is

not before we see the development of a toroidal component, as the star works to stabilize. This is easily seen

in figure 8. The configuration we see as part of figure 7 (before the code stops), in which we have a tightly

wound coil within the boundary of the star and a dipole field outside is, very generally, what we expect in a

stable star.
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Poloidal Field Evolution

Figure 7: A poloidal field (with rotation) of maximum strength B=1017 G at t=0s (top left), 9⇥ 10�6
s (top

right), 2.3 ⇥ 10�5
s (bottom left), and 2.6 ⇥ 10�5

s (bottom right). The final configuration is within a time

step (10�8s) of when the code crashes.

We also explore the evolution of an initially toroidal magnetic field: Inside star:

~

B

r

= 0 (54a)

~

B

✓

= 0 (54b)

~

B

�

=
B

s

sinysin✓

⇡

(54c)

(54d)

Outside star:

~

B

r

= 0 (54e)

~

B

✓

= 0 (54f)

~

B

�

= 0. (54g)

We again take a maximum field strength of B
s

= 1017G. Our field rapidly develops a poloidal component

within the first time step (10�8
s), and proceeds to a twisted torus configuration over long time scales, as
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Poloidal Field Evolution Along Z

Figure 8: We see the development of a toroidal component in an initially poloidal field (with rotation), as

well as the formation of a coil like structure that is typical of fields in stable stars. These snapshots span

from t=0 s to t=2.6⇥ 10�5 s. The top figures are snapshots between equal time intervals of 10�8, while the

bottom figures are interesting configurations that arise throughout the evolution. The final two figures on

the bottom are just before the code ceases running, and show the deterioration of a promising field structure.
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Toroidal Field Evolution

Figure 9: The evolution of a toroidal field of maximum strength B=1017, at times t=0s (top left), 1⇥ 10�4s

(top right), 5⇥ 10�3s (bottom left), and 10�2s (bottom right).

seen in Figure 9. We have run this simulation for 10�2s, and thus far it has been stable. Integrating both

our toroidal and poloidal components over the volume separately after 100 time steps reveals them to be

approaching each other in magnitude: B

T

= 5.22 ⇥ 1015 and B

P

= 6.51 ⇥ 1015. This is an encouraging

sign, as we know from Braithwaite’s work that stable fields require toroidal and poloidal components that

are nearly equal in magnitude.

When simulating in PLUTO, we must make the unphysical approximation of giving the vacuum outside

of the star a density. This is because, as we know from our previous discussion of time scales, when we have

a magnetic field in a vacuum we will be dividing my zero for our time. Thus, without a field of 1010G on the

exterior of the star, our code will stop running almost immediately. While this approximation does prevent

our model from being entirely realistic, it is fair, as the interior of the star is still more dense by five orders

of magnitude than the outside.
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3.5 Gravitational Wave Strain

It is now time to asses the magnetars we have simulated for their potential to generate detectable gravitational

radiation. Earlier, we discussed the methodology for calculating wave strain(h) when the magnetic and

rotational axes are nonaligned, via moment of inertia (I) and ellipticity (✏)

✏ =
I

zz

� I

xx

I0
(55)

I

jk

=

Z

V

⇢(r)(r2�
jk

� x

j

xk)dV (56)

h =
16⇡2

G

c

4

✏I0f
2

r

. (57)

Recall that the moment of inertia of a solid sphere is:

I =
2

5
MR

2
. (58)

While it takes a rotating star, with the rotational axis o↵set from the magnetic axis, to produce gravi-

tational radiation in reality, a calculation with the aligned axes, which is a significantly simpler simulation,

should be su�cient for our purposes. Thus, this is what we have carried out in the prior calculations in this

paper. Evidently, we need a modification to the wave strain if the two axes are aligned, as I

zz

� I

xx

= 0.

We can approximate the deformations in a star with aligned axes for both the poloidal and toroidal fields

to first order, as follows.

Poloidal Field:

✏

P

= �10�10(
R

10km
)2(

M

1.4M�
)�2(

B

1012G
)2 (59a)

Toroidal Field:

✏

T

= �10�12(
R

10km
)4(

M

1.4M�
)�2(

B

1012G
)2 (59b)

We consider the two components separately, as they deform the star in di↵erent ways.

Rotation is also neglected in our model. This is a fair approximation, as magnetars spin very slowly.

Even in the more rapidly rotating strongly magnetized newborn neutron stars, which we investigate, if we
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do not have di↵erential rotation, the topology of the surface will hardly be changed (though the growth of

instabilities will be a↵ected), and we can continue using our approximation.

We can use VisIT to integrate our magnetic field over the star, allowing us to calculate the ellipticity

for both cases we have simulated. To do this, we must separately define expressions within visit for the

magnitude of both the toroidal and poloidal components divided by the overall star volume. Because we are

doing integration over a spherical surface, we must multiply both by r

2
sin✓drd✓d�. We manually calculate

and enter into our expression drd✓d�, by considering our box size and grid size. We have 20 radial points

spanning a 1.2 ⇥ 106 radius, and 20 angular points spanning 2⇡ and pi degrees in ✓ and �. Thus, our

dV= 1.2⇥106

20
2⇡
20

⇡

20 ⇡ 3, 000. We obtain for our ellipticity:

At Time Step 0

✏

poloidal

= 0 (60a)

✏

toroidal

� 2⇥ 10�4 (60b)

At Time Step 100

✏

poloidal

� 3.6⇥ 10�3 (60c)

✏

toroidal

� 2.5⇥ 10�5
. (60d)

This tells us that the type of deformation changes, as our star goes from stretched to squeezed.

Calculating wave strain is, again, trivial if one knows the period of the star and its distance away. While

we do not have this information, we can investigate the distances at which a magnetar spinning with a set

frequency can produce detectable signals. We know LIGO requires h� 10�23. Considering ✏ after 100 time

steps, with some simple algebraic manipulation we see that for a frequency of 10Hz (the lower bound of

what LIGO can detect), a star with this field strength and configuration can be detected at roughly 530 light

years from Earth. For a frequency of 100Hz, the wave strain will be adequate if the star is at a distance of

roughly 53,000 light years.

The accuracy of these calculations is restricted by our grid size, which has 20 radial and angular points.
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However, our results should be su�cient for this investigation.

4 Conclusion

Our simulations and calculations of wave strain reveal that newly born, rapidly rotating and strongly mag-

netised neutron stars are a promising source for gravitational wave detectors such as LIGO.

From here, there is still much work to be done. In the short term, running the same simulations with

higher grid resolution will help improve the ellipticity and consequently wave strain calculations. Then,

adding rotations, investigating di↵erent axial separations and considering temperature in the equation of

state will all contribute to the accuracy of our model. We might also consider a variety of field configurations,

and calculate the ellipticity directly.
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Appendix 1: PLUTO Installation

Two things need to be installed before PLUTO is usable: Python and GNUMake. Python is the easier one

to install: The most recent version can be downloaded from their website. GNUMake is a bit harder to

install. Download the file from their website http://ftp.halifax.rwth-aachen.de/gnu/make/ (mine was called

make-4.1.tar.gz) and install it. Find the folder in downloads, unzip it, and look at the INSTALL document

for installation instructions.

If while installing you get a permission denied error, as I did, try instead,

$sudo make install

Now, this actually didnt work for me it said I didnt have something called autoconf.

If you get an error anywhere in the above text and it says you dont have autoconf, do as follows: Autoconf

requires two others to work: Perl, and m4. Perl is already installed on macs, but you will need to get m4.

Go to ftp://ftp.gnu.org/gnu/m4/ and choose m4-1.4.tar.gz. The installation process should be quite similar

to the one for GNUMake, with instructions in another INSTALL file.

Once these steps are complete, autoconf needs to be installed. It can be found on the site

http://ftp.gnu.org/gnu/autoconf/ where you should choose autoconf-latest.tar.gz from the bottom, and in-

stall it. Autoconf should now be installed. Now just repeat the GNUMake installation steps.

When you downloaded Pluto, you should have gotten a file called pluto-4.1.tar.gz. Unzip it. Pluto is less

clear when it comes to installationyoull have to do some file moving to make it work. The following steps

are a condensed version of the README file in the PLUTO folder.

Steps for installing PLUTO:

Open up finder, and go to your downloads folder. Copy the PLUTO folder. It needs to be pasted into your

specific Users folder, which is accessed through Macintosh HD. In the Users folder (within Macintosh HD),

one of the icons should be your current user account, probably called your name. Mine has a little house as

an icon. Click on whatever account is the one you are using. Then paste in your PLUTO folder. Now, you

need to make a working directory, which is easiest to do in your specific Users folder. This will be where all

of your PLUTO files get saved. Open up the terminal and navigate to this folder. Then do the following

$export PLUTO DIR=/Users/name/PLUTO except, obviously, with the name of your user account instead
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of ”name”. Again, this is the name of the folder that we pasted the PLUTO folder into. It is case sensitive,

so be sure to pay attention to capitalization. This command just defines the term PLUTO DIR so the

program knows where all the PLUTO program files are located. Once youve done that, you can do $python

$PLUTO DIR/setup.py

Once you hit enter, it should open up PLUTO’s terminal interface. If you get here then PLUTO has

successfully been installed!

To obtain our simulations, some alterations had to be made within PLUTO. The square of the sound

speed, which is related to the equation of state by c

sound

2 = 2P/⇢, had to be modified in both the eos.c and

fluxes.c files for an isothermal equation of state. In globals.h, � needed to be modified from 5/3 to 2.
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Appendix 2: Lane-Emden Solver

#include<stdio.h>

#include <math.h>

int main(){

float x,y,z,h,z1,z2,z3,z4,y1,y2,y3,y4,dx,n;

printf("Give n:\n");

scanf("%f",&n);

h=.0005;

dx=h;

z1=z2=z3=z4=y1=y2=y3=y4=0;

y=1.0;

z=0.0;

x=0.01;

FILE *NPolytrope;

NPolytrope = fopen("NPolytrope.dat", "w");

while(x<=3.14159)

{

y1 = h*z;

z1 = h*-1*pow(x,-2)*(2*x*z + pow(x,2)*pow(y,n));

y2 = h*(z+z1/2);

z2 = h*-1*pow(x+dx/2,-2)*(2*(x+dx/2)*(z+z1/2) + pow(x+dx/2,2)*pow(y+y1/2,n));

y3 = h*(z+z2/2);

z3 = h*-1*pow(x+dx/2,-2)*(2*(x+dx/2)*(z+z2/2) + pow(x+dx/2,2)*pow(y+y2/2,n));

y4 = h*(z+z3);

z4 = h*-1*pow(x+dx,-2)*(2*(x+dx)*(z+z3) + pow(x+dx,2)*pow(y+y3,n));
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y = y+(y1+2*y2+2*y3+y4)/6;

z = z+(z1+2*z2+2*z3+z4)/6;

x = x+dx;

fprintf(NPolytrope,"%f\t %f\t %f\t %f\n",x,y,z,sin(x)/x);

}

return(0);

}
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