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Abstract

We utilize LISA Pathfinder’s (LPF) already well-developed software package LT-
PDA (LISA Technology Package Data Analysis) in order to examine how non-stationary
noise and gaps in data acquisition affects LPF system identification. We work primarily
within a Bayesian framework, developing four different likelihood formulations, each
with a different method of dealing with the problem of an unknown noise spectrum.
The χ2 likelihood simply fits residuals to previously measured noise, the noise scaling
likelihood allows the measured noise to change in magnitude between measurement
and experiment, the student-t likelihood allows the noise to vary more widely than
in a Gaussian distribution, and the logarithmic likelihood marginalizes out the noise
spectrum entirely. We test these four different theoretical approaches against differ-
ent non-stationary noise processes, including an overall raised noise level and injected
Gaussian bursts. In addition, we test these theoretical approaches in the case of gaps
in data acquisition. We perform these tests in three separate simulated experiments:
a toy model, simulated LPF data from the Albert Einstein Institute, and simulated
data from the European Space Agency. We find that in the case of LPF system iden-
tification, all approaches are quite robust against both non-stationary noise and gaps
in data acquisition.

. . .

1 Introduction

Now is an exciting time in the field of gravitational wave research. The ground-based Laser
Interferometer Gravitational-wave Observatory (LIGO) detectors are coming online this year
and we could see the first direct detection of a gravitational wave at any time. However,
ground-based detectors are limited to sensitivity to signals on the order of hundreds of Hertz
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Figure 1: A functional schematic of the LPF spacecraft. The reference test
mass (TM1) is kept in freefall via a control loop between interferometer
x1 and the spacecraft thrusters, and the second test mass (TM2) is kept
stationary within the spacecraft via a control loop between interferometer
x12 and the electrodes. [5]

due to seismic noise in lower frequencies [6]. Space-based detectors have significantly lower
seismic noise and thus have high sensitivity to signals on the order of mHz.

The goal of the Evolved Laser Interferometer Space Antenna (eLISA) project is to con-
struct such a detector. While a fully functioning space-based gravitational wave detector is
more than 20 years away, the eLISA project is finally “getting off the ground” in the form
of LISA Pathfinder (LPF), which is a space mission dedicated to demonstrating the tech-
nology needed for the eLISA project, as well as confirming Einstein’s geodesic motion. The
LPF spacecraft consists of two test masses and two interferometers. The spacecraft utilizes
its thrusters to remain centered around the first test mass (TM1, also called the reference
test mass) such that it is in free fall. The second test mass (TM2) is held stationary in
the frame of the spacecraft with electrodes. To accomplish this, interferometer x1 measures
the distance between TM1 and the spacecraft, and interferometer x12 measures the distance
between the two test masses. Interferometer x1 feeds information to the thrusters and x12
feeds information to the electrodes. (See Figure 1.) The goal of the mission is to measure the
relative acceleration between the test masses to the accuracy required for the eLISA project.
If we reach the required sensitivity, we can also use the apparatus to measure the geodesic
motion of the two test masses.

In this paper we are concerned with the system identification analysis for the LPF ap-
paratus. Our model for the dynamics of the LPF system includes constants such as the
spring-like stiffnesses of the test masses or the system delay between interferometer mea-
surement and the application of command forces by the electrodes on the second test mass.
The goal of system identification is to determine these constants within our model for LPF
experiment. In order to accomplish this, using primarily Bayesian methods on simulated
LPF data we compare the model for the residuals to previously measured noise. However,
in the future space-based detectors, the gravitational signals we expect to see in our data
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cannot be turned off in order to measure the noise directly, which makes it difficult to use tra-
ditional Bayesian methods. In addition, there may be non-stationary noise processes, which
may change the characteristics of the noise between measurement and experiment. We at-
tempt to preemptively deal with these problems with a variety of theoretical approaches
to the Bayesian likelihood. In this paper, we compare these different approaches against
different characterizations of the noise, as well as other complications that may arise during
data acquisition, such as missing data.

Outline The remainder of this paper is organized as follows:
Section 2 outlines several theoretical approaches to the Bayesian likelihood.
In Section 3, we test the theoretical approaches outlined in Section 2 on a toy model of

sinusoidal signals embedded in some noise, with different noise realizations between mea-
surement in experiment.

In Section 4, we perform parameter estimation tests on LPF data simuated by the Albert
Einstein Institute and by the European Space Agency, both in the case of varying noise
realizations and in the case of missing data.

Finally, Section 5 gives a summary of our findings.

2 Theoretical Approaches

2.1 Bayesian framework

In LPF we must be able to characterize the system in order to extract signals from the noisy
data. There are several possible approaches to system identification, but we focus primarily
on a Bayesian framework. To utilize Bayesian inference, we assume the following model for
the observed data y:

y = h(~θ) + n, (1)

where h(~θ) is the quantitative result from the system model M given a set of system pa-

rameters ~θ and n is the noise.
If we assume the quantitative modelM we can assign probabilities to different parameter

configurations ~θ using Bayes’ theorem:

p(~θ|y,M) =
p(y|~θ,M)p(~θ)

p(y|M)
. (2)

The posterior distribution p(~θ|y,M) is the probability of the parameters given the observed
data. Maximizing this value gives an estimate for the system parameters. The prior dis-
tribution p(~θ) gives the domain and weights to the values in the parameter space, and the
evidence p(y|M) gives the ability of the model to describe the data, but for parameter es-

timation this is an unimportant normalization constant. Finally, the likelihood p(y|~θ,M)
gives the probability that the data arose from the model [1].

There are many distinct formulations of the likelihood, and the primary difference be-
tween the methods we test is how the noise is or is not included in the analysis. Each
formulation has its own strengths and weaknesses, and it is the goal of this paper to explore
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which formulations are most suitable for LPF data analysis. In the following sections we
define four different formulations of the Bayesian likelihood: the χ2, scaled noise modeling,
Student t-distribution, and logarithmic likelihoods.

2.1.1 χ2 likelihood

We begin with the well-established χ2 likelihood. Here, the noise is assumed to be Gaussian,
uncorrelated, and stationary with zero-mean. Given these assumptions, the random noise
process determines a natural inner product (·|·) and associated norm on the vector space of
measurements, given by [2]

(a|b) = 2

∫ ∞
0

df
[
ã∗(f)b̃(f) + ã(f)b̃∗(f)

]
/S̃n(f), (3)

where the tilde ( ˜ ) denotes operations in the frequency domain, the asterisk (∗) denotes
the complex conjugate, a and b are time-series data, and S̃n is the one-sided power spectral
density (PSD) of the noise n in the data. Here we assume the PSD of n has been measured
in a previous experiment.

It can then be shown [2] that the probability for n to take a specific value n0(t) can be
expressed as

p(n = n0) ∝ exp

[
− 1

2
(n0|n0)

]
. (4)

From Equation 1, we see that this is equivalent to p(y−h(~θ)) ∝ exp[−1/2(y−h(~θ)|y−h(~θ))].
We use this equation to define the χ2 likelihood. For some constant C,

p(y|~θ,M, Sn) = C × exp

[
− 1

2

(
y − h(~θ)

∣∣∣y − h(~θ)
)]

= C × e−χ2/2, (5)

where
χ2 =

(
y − h(~θ)

∣∣∣y − h(~θ)
)
. (6)

Thus, in essence we fit the PSD of the residuals from the data and model to the PSD of the
previously measured noise.

2.1.2 Scaled noise modeling

It may be the case that during an LPF experiment, the noise level on a specific frequency
band will change in magnitude. Here we develop a likelihood with the same assumptions as
in the χ2 case, but we allow the noise level in pre-defined frequency bands to fluctuate. We
divide S̃n(f) into k frequency bands such that

S̃n,i(f)→ ηi S̃n,i(f), 1 ≤ i ≤ k, (7)

where S̃n,i(f) is the ith frequency band of S̃n(f) and ηi is the noise scaling factor for that
band (See Figure 2).

We now consider these noise coefficients ηi as additional parameters to be estimated along
with the system parameters of the model. Thus, some terms in C from Equation 5 are no
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Figure 2: Here we see an example of a possible noise scaling configuration
using the noise modeling likelihood. We divide S̃n(f) into five frequency
bands, each with a different ηi. These two sets of frequency-dependent
data are multiplied together point by point and then used as the noise in
Equation 3 to formulate the scaled noise modeling likelihood.

longer constant. Pulling these terms out, it can be shown [3] that the likelihood for this new
noise model is

p(y|~θ,M, Sn) = C ′ × exp

[
− 1

2

(
χ2 +

k∑
i=1

Ni ln ηi

)]
, (8)

where C ′ is some new constant, and Ni is the number of Fourier bins in the ith frequency
band. Henceforth we call this the noise modeling likelihood.

2.1.3 Student t-distribution

Recall the χ2 likelihood, where we assume the noise to be Gaussian, uncorrelated, and
stationary with zero-mean, which requires perfect knowledge of the noise spectrum and
therefore its variance σ2. If we allow the noise spectrum to vary around its measured values,
this is equivalent to considering the variance of the noise σ2 as a random variable, and we
can produce a likelihood which marginalizes σ2 out. It can be shown that this is equivalent
to assuming the noise to be t-distributed [4].

First, we now consider the variance of the noise σ2 to be a random variable drawn from
the scaled inverse χ2 distribution

σ2 ∼ Inv-χ2(ν, s2), (9)

where ν is the degrees-of-freedom parameter and s2 is the scale parameter given by

ν = 4 + 2
E[σ2]2

Var[σ2]
(10)

and

s2 =
ν − 2

ν
E[σ2]. (11)
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We take E[σ2] to be the to be the Gaussian variance σ2 of the noise, and the ratio E[σ2]2/Var[σ2]
to be a fixed parameter in the formulation of this likelihood, which captures how far we allow
σ2 to vary from its mean value.

Using this scaled inverse χ2 distribution as a prior, we marginalize σ2 out and arrive at
the following marginalized likelihood [4]:

p(n = n0|ν, s2) ∝ exp

[
−

N∑
i=1

ν + 2

2
ln
[
1 +
|ñ0,i|2

s2ν

]]
, (12)

where n0,i is the ith data point of the noise residual given by Equation 1, and N is the total
number of Fourier bins. We now take this as our Bayesian likelihood:

p(y|~θ,M, ν, s2) ∝ exp

[
−

N∑
i=1

ν + 2

2
ln
[
1 +
|ỹi − h̃i(~θ)|2

s2ν

]]
, (13)

where ỹi and h̃i(~θ) represent the ith data points in the respective one-sided PSDs. Note
how due to the placement of the sum that this is not relatable to the χ2 quantity from
Equation 18. This likelihood shows that this process is equivalent to treating the noise as
t-distributed [4], and henceforth will be called the student-t likelihood. In the limit of large
ν, the Student t-distribution approaches the Gaussian distribution. Thus, for large ν, we
should expect this likelihood to be equivalent to the χ2.

2.1.4 Logarithmic likelihood

It can be shown [5] that the χ2 likelihood in Equation 5 can be expressed exactly as

p(y|~θ,M, Sn) =
N∏
i=1

1

πñi
exp

[
− |ỹi − h̃i(

~θ)|2

ñi

]
, (14)

where ñi is the ith data point in the one-sided PSD of the previously measured noise S̃n.
However, if we partition the time series data into shorter stretches and average, this becomes

p(y|~θ,M, Sn) =
N∏
i=1

1

(πñi)Ns
exp

[
−Ns

|ỹi − h̃i(~θ)|2
ñi

]
, (15)

where the bar is an average over Ns stretches of data. [5]
Then we marginalize ñi out of Equation 15 by integrating over S̃n with a uniform prior

in ln S̃n. It can then be shown [5] that for high enough Ns, the marginalized likelihood is
given by

p(y|~θ,M, Ns) ∝
N∏
i=1

(
|ỹi − h̃i(~θ)|2

)−Ns
. (16)

The relationship between Equations 15 and 16 is reminiscently logarithmic, so we call this
the logarithmic likelihood. Because this likelihood is unweighted by the noise, we should
expect larger errors in the resulting parameter estimations than in the χ2 likelihood. It can
also be shown that Equation 16 can be derived from the student-t likelihood by taking an
improper Jeffrey’s prior with ν = 0 [4].
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2.2 Iterative Reweighted Least Squares (IRLS) method

The Iterative Reweighted Least Squares (IRLS) method is unlike the other likelihoods in that
it is frequentist rather than Bayesian in its approach, and its implementation is iterative in
nature. At each iterative step, we maximize the χ2 likelihood, using the resulting residuals
(y − h(~θ)) as the noise spectrum in the next iteration. At the first iteration, we make
an arbitrary guess for the noise spectrum, which we can take to be uniform or just the
spectrum of the data. The iteration terminates when the noise residuals cease to change
between iterations to some tolerance [5]. Thus, the IRLS likelihood is defined by

p(y|~θ,M) = C × e−χ2
n/2, (17)

where

χ2
n =

N∑
i=1

|ỹi − h̃i(~θn)|2

|ỹi − h̃i(~θn−1)|2
. (18)

Here χ2
n is the likelihood at at the nth iteration and ~θn−1 is the estimation result from the

previous iteration.
Unlike all previous likelihoods, which only have to be maximized once, this likelihood

must be maximized several times in order to achieve convergence. Thus, in general utilizing
the IRLS method is much more computationally expensive than any other likelihood. How-
ever, if the model is linear, meaning that the parameters are simply amplitude coefficients,
then maximizing this likelihood is reducible to solving a system of linear equations [5], and
is such much less computationally intensive than maximizing the above likelihoods.

It can also be shown [5] that the IRLS method converges to the same parameter values
as the logarithmic likelihood. However, unlike the logarithmic likelihood, this method is
explicitly Gaussian, and may have different error estimates for its parameters.

3 Tests on a Toy Model

In this section we perform our initial tests of the four likelihood formulations and the linear
least squares method. The model is a simple superposition of three sinusoids of different
frequency, amplitude, and duration. We will estimate the amplitudes A, B, and C of the
three signals, assuming knowledge of the frequencies, durations, and start times. To generate
the data, we add the sinusoids from the model to a stretch of noise (as in Equation 1),
which has been colored similar to LPF-acceleration noise. Also, most likelihood formulations
developed above need some prior knowledge of the noise in the data, so we feed them a stretch
of noise without an embedded signal (See Figure 14). However, in the LPF experiment,
the noise is likely to change between measurement and experiment, so the noise we use in
the construction of the data may be different from the noise we use in constructing the
likelihoods. We also use Equation 1 as our fitting model, so by design our residuals from the
model fit should be exactly the same as our noise, at least in the case of no change in noise
between measurement and experiment, as shown in Figure 3. For further confirmation that
our model is correct, we performed the Kolmogorov-Smirnov test, which tests if two random
variables come from the same distribution. We take the residuals and noise to be from the
same distribution and find that this assumption passes the Kolmogorov-Smirnov test.
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Figure 3: Here we plot the PSDs of both the noise in our data and of
our residuals (the model for the signal subtracted from the experimental
data) with area errors. Because this is exactly how we construct our data
in the first place, we see that the two curves are identical.

In this section we explore how different changes to the noise between measurement and
experiment affect the parameter estimation results from the different likelihood formulations
and the least squares method.

MCMC tests For all of the parameter estimations outlined in Section 2, we need to
maximize the posterior distribution. In order to accomplish this (except for in the case
of the IRLS method, where we solve linear equations), we utilize a modified Metropolis-
Hastings algorithm. The Metropolis-Hastings algorithm is a Markov Chain Monte Carlo
(MCMC) test, where at each iteration, it takes a random step in the parameter space and
accepts or rejects that step with a probability based on the difference between the values of
the posterior distribution at the start- and end-points in the parameter space. A higher value
in the posterior distribution signifies a higher probability that step will be accepted. If the
model adequately describes the data, then after many iterations, the posterior distribution
will converge to the global maximum, and the input parameters for the global maximum
yield the parameter estimation. In addition, if we set our starting point in the parameter
space near the maximum, we can map the posterior distribution in that reason to find the
width of the maximum and find error estimates for each parameter.

Noise Changes We run three sets of 50 MCMC parameter estimation tests. In each set,
we utilize a different noise realization when constructing the experimental data. In the first
set of tests, we make no changes to the noise before adding it to the signal (See Figure 4).
In the second set of tests, we increase the overall level of the noise in the experimental data
by a factor of

√
2 (See Figure 15). In the third set of tests, we embed Gaussian burst signals

into the experimental data (See Figures 16 and 17). See the results of the MCMC tests in
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(a) Data Time Series (b) Data and Noise PSDs

Figure 4: The data with no change in noise between measurement and ex-
periment, simply adding the noise to the signal without any modifications.
Note in the PSD that at high frequencies the data is indistinguishable from
the noise, but we see low frequency differences, including the peaks from
the sinusoidal signals.

Figure 5. Here is a list of our observations of the data table:

• In general the parameter estimations are very good in the first two noise realizations,
ranging from 0.1% to 3% error in the worst cases.

• The logarithmic estimations have larger errors than the χ2, as expected due to un-
weighted noise.

• The student-t estimations have smaller errors than the χ2, which is unexpected, which
means that the wider-tailed Student t-distribution is better suited to characterize the
noise.

• The logarithmic and IRLS estimations have very similar results, but different errors,
as expected.

• The errors in the noise modeling estimation are in general not very good, even for the
change in noise level for which it was designed. This is likely due to improper setup of
the MCMC test.

• The errors with the noise level change increase slightly for all but the χ2 tests.

• The errors with the embedded Gaussian bursts increased by at least an order of mag-
nitude for all but the χ2 tests, and was truly disastrous for the noise modeling tests.
This is likely due to the fact that in the low frequency range, the noise level changed
by up to six orders of magnitude (See Figure 17).

• Surprisingly, the errors in the χ2 tests became smaller with embedded Gaussian bursts,
but we see that the spread of the means increased by an order of magnitude, just like
the other tests. This could be because the location, size, and frequency of the Gaussian
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bursts is randomized, so the convergence value for the parameters is not the same for
each MCMC test.
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χ2 Logarithmic Ns = 5 Noise modeling
θ True µ̂ σrms σµ̂ µ̂ σrms σµ̂ µ̂ σrms σµ̂
A 1 1.0006 0.0040 0.0059 1.0038 0.0139 0.0135 0.9878 0.1712 0.2300
B 2 2.0009 0.0049 0.0063 2.0008 0.0073 0.0062 1.9850 0.1326 0.0746
C 2 1.9992 0.0288 0.0281 1.9957 0.0398 0.0404 1.9965 0.1562 0.0332

Student-t ν = 6 Student-t ν = 4 IRLS
θ True µ̂ σrms σµ̂ µ̂ σrms σµ̂ µ̂ σrms σµ̂
A 1 1.0007 0.0033 0.0061 1.0008 0.0030 0.0061 0.9978 0.0139 0.0128
B 2 2.0013 0.0039 0.0067 2.0007 0.0035 0.0061 2.0008 0.0100 0.0101
C 2 2.0030 0.0235 0.0439 2.0000 0.0211 0.0285 2.0007 0.0247 0.0243

(a) No Change

χ2 Logarithmic Ns = 5 Noise modeling
θ True µ̂ σrms σµ̂ µ̂ σrms σµ̂ µ̂ σrms σµ̂
A 1 1.0011 0.0039 0.0106 1.0003 0.0301 0.0228 0.9819 0.1818 0.2425
B 2 2.0030 0.0048 0.0100 2.0034 0.0102 0.0099 2.0124 0.1790 0.1173
C 2 1.9882 0.0281 0.0503 2.0010 0.0581 0.0577 1.9946 0.2469 0.0599

Student-t ν = 6 Student-t ν = 4 IRLS
θ True µ̂ σrms σµ̂ µ̂ σrms σµ̂ µ̂ σrms σµ̂
A 1 0.9997 0.0036 0.0056 0.9995 0.0033 0.0057 0.9976 0.0220 0.0303
B 2 2.0027 0.0045 0.0095 2.0029 0.0040 0.0094 2.0023 0.0140 0.0178
C 2 1.9906 0.0262 0.0473 1.9905 0.0234 0.0471 1.9934 0.0356 0.0396

(b) Level Change

χ2 Logarithmic Ns = 5 Noise modeling
θ True µ̂ σrms σµ̂ µ̂ σrms σµ̂ µ̂ σrms σµ̂
A 5 5.0001 0.0008 0.3956 4.9483 1.2287 0.8138 8.985 13.892 45.404
B 10 9.9432 0.0010 0.2207 9.9708 0.2161 0.2085 14.803 7.218 31.973
C 10 9.9969 0.0058 0.1546 9.9684 0.2527 0.2438 10.451 2.710 3.125

Student-t ν = 6 Student-t ν = 4 IRLS
θ True µ̂ σrms σµ̂ µ̂ σrms σµ̂ µ̂ σrms σµ̂
A 5 4.9596 0.1085 0.5083 5.0314 0.1190 0.7186 4.9752 1.1235 1.1034
B 10 9.9344 0.0459 0.2193 9.9342 0.0534 0.2185 9.9781 0.3019 0.3501
C 10 9.9900 0.0418 0.1526 9.9907 0.0522 0.1562 9.9780 0.1231 0.1111

(c) Gaussian Bursts

Figure 5: A table of the results from 50 estimations of the toy model
amplitude parameters A, B, and C, from each the three different noise
realizations during experiment. The “True” column gives the actual values
of the parameters, µ̂ is the average of the mean values from the 50 the
MCMC results, σrms is the root-mean-square of the standard deviations,
and σµ̂ is the standard deviation of the mean values. Given a consistent,
Gaussian spread of the parameters, σrms and σµ̂ should be identical.
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4 Tests on LPF Models

Now we perform the same sorts of tests, but with simulated LPF data and an associated
model instead of the toy sinusoidal signal and model. Recall the LPF system configuration
from Figure 1. In order to simulate real LPF data for our analysis, we utilize a LPF simulator
from the Albert Einstein Institute. To perform a noise measurement, we Let the simulator
run without any injected signals. To obtain the data for our experiment, we perform signal
injections. This means that we effectively “lie” to the controllers in the simulator, indicating
interferometer readout that has no physical cause, then the spacecraft thrusters and elec-
trodes around the second test mass activate to compensate, resulting in more dynamic data.
You can see our injection scheme and the resulting data in Figure 6.

(a) Injection Signals (b) Experiment Data

Figure 6: The signals injected into the interferometer readout, and the
resulting data from the LPF simulation. On the left are the injected
interferometer signals fed to the controller, x12 in blue and x1 in red. On
the right are the resulting interferometer outputs.

The main measurement of interest is the acceleration between the two test masses. Thus,
the dynamics of the LPF system are captured in the following equation for the acceleration
noise residuals:

n(t) =
∂2

∂t2
x12(t)−

(
δIFO

∂2

∂t2
x1(t) + Asus

Fcmd,2(t− τ)

m2

+
(
ω2
2 − ω2

1

)
x1(t) + ω2

2(x12(t)− δIFO x1(t))
)

(19)

where Fcmd,2 is the net of the command forces applied to the second test mass, Asus is an
amplitude coefficient for the command suspension forces (expected to be close to unity), m2 is
the mass of the second test mass, τ characterizes the system delay between the measurement
of test mass acceleration and the application of the command forces, ω1 and ω2 are the
spring-like stiffnesses of the respective test masses, and δIFO is a coupling coefficient between
interferometers x1 and x12. To confirm that Equation 19 accurately describes the noise
residuals, we generate some data and plot the PSDs of previously measured noise with the
residuals in Figure 7. As with the toy model, for further confirmation we performed the
Kolmogorov-Smirnov test, and we find that our model passes.
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Figure 7: Here we plot the PSDs of the model results from Equation 19
in the case of no injections (blue) and with the injected signals shown in
Figure 6 (red) along with their errors as shaded areas. Ideally they would
be the same, but we see differences in the low-frequency range, probably
due to the fact that we measured the noise for longer than we took data.

4.1 Noise Changes

Because the LPF simulator allows us to generate the signal and noise separately, we can
perform a similar analysis to that with the toy model. Like with the toy model, we perform
three experiments with different noise realizations, including no change in the noise, an
overall change in noise magnitude, and embedding Gaussian bursts. See the estimation
results in Figure 8. Here is a list of our observations of the data table:

• These parameter estimations are much better than with the toy model, with correct
estimations ranging from 10−4 to 1 percent error.

• Each likelihood presents nearly identical errors.

• There is a slight overall increase in the errors in the case of a level change in the noise.

• The errors with each likelihood do not change much with the noise realization, mean-
ing that all of these likelihood formulations are well-suited for simple LPF system
identification.
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4.2 Gaps in Data

Another concern in the LPF experiment is missing data. Here we performed a single MCMC
test on each of four situations: no gaps in the data, ten 5-second gaps in the data, two
one-hour gaps in the data eliminating low-frequency injections, and two one-hour gaps in
the data eliminating high-frequency injections. In computing the likelihood, we take each
uninterrupted segment of data to be a separate experiment. (See Figure 9.)

We also chose this run to test variations in the fixed parameter Ns in the logarithmic
likelihood. Recall in the logarithmic likelihood, we split the time series data into Ns stretches
and average the PSDs of these stretches. The parameter Ns must be high enough such that
the MCMC test converges to the true value, but also low enough to keep the errors at a
minimum. See the numerical results in Figure 10 and the accompanying plots in Figures 18
and 19. Here is a list of our observations of the results:

• The parameter estimations are still very good overall, with between 10−4% and 4%
error.

• The ten five-second gaps made little difference in using the χ2 likelihood, but caused
a factor of two increase in the errors of the test mass stiffnesses with the logarithmic
likelihoods.

• Missing data during low-frequency injections results in an order of magnitude increase
in all errors

• Missing data during high-frequency injections causes only a slight increase in the log-
arithmic errors, and a decrease in the χ2 errors.

• In the case of no data gaps, setting Ns = 5 is an acceptable choice, as we have been
doing in previous estimations.

• In the case of gaps in the data, we are analyzing shorter segments, so we would expect
to need a smaller Ns. We see that approximately Ns = 3 gives minimum errors in
these cases.
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(a) No gaps (b) Ten five-second gaps

(c) Two one-hour gaps (during low-
frequency injections)

(d) Two one-hour gaps (during high-
frequency injections)

Figure 9: Examples of the four different types of gaps we introduced
into the data. Each color reperesents a different uninterupted segment
of data. Note that the two interferometer channels are super-imposed in
these graphs.
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Figure 11: Here you can see the LPF data simulated by the European
Space Agency. From the interferometer output in blue and red, we can
see that they are using an injection scheme very similar to our own. We
can also see the command forces on the second test mass in cyan.

4.3 Black box simulations

In order to verify our results made with our own LPF simulators, we perform similar analyses
to data simulated by the European Space Agency, of which we do not have knowledge of the
specifics of the model or the true values of any parameters used in generating the data. You
can see plots of the data in Figure 11.

In order to estimate these unknown parameters, we test a slightly different linearized
version of the model in Equation 19. Firstly, we omit the coupling parameter δIFO because
we know it was not taken into account the data generation. In addition, the delay parameter
τ is not linear, but for small values of τ , we can simulate a delay by taking a Taylor expansion
of the command forces and adding coefficient parameters. We include the first two derivatives
with respective coefficients C1 and C2:

n(t) =
∂2

∂t2
x12(t)−

(
Asus

Fcmd,2(t)

m2

+ C1
∂

∂t

Fcmd,2(t)

m2

+ C2
∂2

∂t2
Fcmd,2(t)

m2

+ δω2x1(t) + ω2
2x12(t)

)
(20)

where we estimate the parameter δω2 = ω2
2 − ω2

1 instead of ω2
1 on its own.

See the results of the parameter estimations in Figure 13 and the accompanying residuals
in Figure 12. We notice that these parameter estimations are much less precise than those
made with our own LPF data generation, with percent errors ranging from 10−2 to 25 percent
error. The most imprecise measurement is that of δω2, except in the case of the logarithmic
likelihood and the IRLS method, both of which have much smaller error estimates in this
parameter than the other likelihoods.
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Figure 12: These are the residuals from the external generated data and
the model evaluated at the estimated values. As you can see, this model
does not do quite as well at eliminating the noise as in the case of the
LPF simulations by the Albert Einstein Institute. It appears that there
is a level change in the mid-frequency range which is not accounted for in
our model.

χ2 Logarithmic Ns = 5 Noise modeling Student-t ν = 14 IRLS
θ µ σ µ σ µ σ µ σ µ σ
C1 -0.9266 0.0057 -0.9287 0.0077 -0.9264 0.0090 -0.9257 0.0056 -0.9260 0.0074
C2 -0.47 0.12 -0.585 0.125 -0.46 0.19 -0.45 0.12 -0.59 0.12
Asus 1.0000 1e-4 1.0000 2e-4 1.0000 2e-4 0.9999 1e-4 1.0000 2e-4

δω2 (e-7) -8.409 1.383 -6.614 0.065 -8.430 2.194 -8.619 1.392 -6.573 0.068
ω2
2 (e-7) -9.642 0.059 -9.684 0.095 -9.642 0.094 -9.624 0.058 -9.571 0.118

Figure 13: Results from the LPF parameter estimation with data gener-
ated by the European Space Agency. Here µ is the estimate, and σ is the
estimated error for the respective parameter.

5 Conclusions

In general all methods of parameter estimation work well in most cases. With both the
toy model and the LPF simulations, all likelihoods prove to be accurate in recovering the
system parameters. Even when we introduce noise not taken into account in the likelihood
formulations, we still recover the correct parameter values with small relative error. Even
with numerous or large gaps artificially introduced into the data, all methods remain robust
in their estimations.

That said, each likelihood requires a fair bit of fine-tuning before we arrive at such nice
results. For example, we must estimate the covariance in the parameters in order to decide
the step sizes of our random walk in the parameter space, but each likelihood may need
slightly different sizes of steps. Additionally, the student-t and level change likelihoods
require manual tuning of the additional parameters introduced in those models. Finally,

19



the estimation results highly depend on the model used for the acceleration noise residuals.
Omitting or adding a parameter can drastically affect the errors in the estimations. This is
evidenced by our results from the externally generated data. Thus, one must take care in
choosing the model for the fit.

Topics for further investigation include finding a way to determine the likelihood-specific
parameters one should use before beginning the parameter estimation (e.g. the number of
scaling parameters in the level change likelihood, the number of degrees of freedom in the
student-t likelihood, or the number of averages in the logarithmic likelihood). This would
greatly speed up the process, since currently these parameters have to be determined manu-
ally by trial and error. Further investigation should also include a comparison of parameter
estimation results using different models to determine which parameters are important.
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(a) Signal Time Series (b) Measured Noise Time Series

(c) Signal PSD (d) Measured Noise PSD

Figure 14: The time series and power spectral densities (PSDs) of the
signal and noise. On the left is the signal we recover using MCMC tests.
Note the peaks from the sinusoidal signals in the PSD at 10−3, 2× 10−3,
and 5× 10−3 Hz. On the right is a sample of LPF-like acceleration noise
without any embedded signal. This is the noise we use to calculate the
likelihoods in all MCMC tests.

(a) Noise Time Series (b) Data and Noise PSDs

Figure 15: Noise and data in the case of increase in noise magnitude
between measurement and experiment. Note the overall increase in mag-
nitude of the data’s PSD and time series.
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Figure 16: Gaussian burst examples

(a) Downsampled Noise Time Series (b) Data and Noise PSDs

Figure 17: Noise and data in the case of Gaussian bursts embedded in the
noise between measurement and experiment. On the left we see the noise
time series’, which have been downsampled to expose the short-duration
Gaussian bursts in the noise added to the signal. On the right we see
that the high-frequency data is indistinguishable from the measured noise,
while at lower frequencies There is a much higher noise level. However,
we can still see the frequency peaks of the sinusoidal signals.
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(a) No gaps

(b) Ten five-second gaps

Figure 18: The sample distributions from the MCMC tests in the case of
no gaps and ten five-second gaps. We tested four different values of Ns

for the logarithmic likelihood, as well as the χ2 likelihood.
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(a) Two one-hour gaps (during low-frequency injections)

(b) Two one-hour gaps (during high-frequency injections)

Figure 19: The sample distributions from the MCMC tests in the case of
hour-long gaps covering low frequency and high frequency injections. We
tested four different values of Ns for the logarithmic likelihood, as well as
the χ2 likelihood.
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