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A challenge with gravitational wave interferometry has been detecting signals in the presence of
noise and glitches. One method to make signals stand out in the presence of noise involves filtering
the data suspected of containing a signal. In this paper we present an investigation of filtering a
particular type of gravitational waves known as r-modes. We discovered that the filtering is effective
if the signal being filtered has the same shape as the signal that was used to generate the filter.

I. INTRODUCTION

On September 14th, 2015, The Laser Interferometer
Gravitational-Wave Observatories (LIGO) detected the
first gravitational wave (GW150914) with a large Signal-
to-Noise Ratio (SNR) [1]. The source of GW150914 was
a binary black hole in-spiral. Since this detection, there
have been two other gravitational wave detections from
binary black hole systems. These detections have proven
the existence of BBH systems, and we have learned much
from them.

Another promising candidate for producing gravita-
tional wave (GW) signals detectable by the laser interfer-
ometer detectors LIGO and Virgo (a gravitational wave
observatory based in Italy) are spinning neutron stars.
These astronomical bodies, expected to be almost per-
fectly spherical may generate continuous gravitational
waves if they are not perfectly symmetric around their
rotation axis. It is hypothesised that even a small asym-
metry due to a surface bump can induce the emission
continuous GWs as the star spins [2]. This bump can be
as small as that with a height of 10−7 × R where R is
the radius of the star (analysis of the O1 data has shown
that if a bump is present on the Crab pulsar, it can be
no larger than 10 cm in height).

The majority of neutron stars that have been found so
far have been located due to their electromagnetic pul-
sations which sweep across Earth periodically. This has
lead to the discovery of less than 0.003% of the expected
number of neutron stars in the Milky Way [3]. Gravita-
tional waves may be the key to locating these astronom-
ical bodies, hidden in space.

The goal of this research is to a technique of improving
the detection of a particular type of neutron star gravita-
tional wave emission (r-mode gravitational wave forms).
The method involves the application of filters to power
spectrum data (the fast Fourier transform or FFT of the
laser interferometer strain data that we simulate).
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II. BACKGROUND

In 1974 Hulse and Taylor made the first detection of
a binary pulsar - a system with two orbiting neutron
stars of which one was a pulsar. By studying the elec-
tromagnetic radiation from the pulsar, the masses and
other information about the neutron stars were obtained.
Hulse and Taylor also recorded that the system’s or-
bital period was gradually shortening. It was deduced
that this decrease in orbital period was due to the loss
in orbital energy in the form of gravitational radiation.
The energy suspected to be converted into gravitational
radiation matched the predictions from general relativ-
ity. This provided us with indirect evidence that gravi-
tational waves could be exist.

A. Ground Based Laser Interferometers

Shortly after 1974, there were many more detections
of pulsars and the search for a direct gravitational wave
detection was initiated. None of the first generation grav-
itational wave detectors (such as the bar detectors) were
successful in discovering a gravitational wave. This led
to the construction of several kilometre-scale interferom-
eters as gravitational wave detectors in the 1990s. For
several years, the detectors were adjusted to be more
sensitive as they were unable to detect a gravitational
wave. Finally, when the LIGO detectors were made to
be sensitive to perturbations in the order of 1018 m, the
first gravitational wave detection was made.

Each of the LIGO and VIRGO observatories uses mod-
ified Michelson Interferometer to detect the presence of
a gravitational wave by measuring the difference in the
length of the orthogonal arms of the observatory [1]. To
determine if data recorded by LIGO stores gravitational
wave information, the data is processed with two search
techniques. One search looks for generic transient wave-
forms (unmodeled or unexpected waveforms). The sec-
ond is a match filtered search that compares the data
with templates of waveforms generated by general rela-
tivity (see [4] for information on the searches). Both the
search processes are made challenging due to the back-
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ground noise present in the data (due to apparatus de-
fects, seismic activity, etc)[5]. Analysis groups implement
a detection statistic to rank the strains in the recorded
data according to the likelihood that the strain resulted
from a gravitational wave or noise. Only strains with a
high likelihood can be considered to be due to gravita-
tional waves and are called candidate events (refer to [1]).
Each candidate event is processed with several searches
corresponding to different types of gravitational wave.
The main categories of gravitational waves are continu-
ous GWs, compact binary in-spiral GWs, stochastic GWs
and burst GWs. It is hypothesised that neutron stars
emit continuous GWs.

B. Neutron Stars and Gravitational Waves

1. GW emission from Neutron Stars

Gravitational waves are radiated from objects that are
accelerating and have a non symmetric motion (like an
expanding/contracting sphere) or a non symmetric axis
of rotation (like a rotating disc with a surface defect).
This asymmetry produces a quadrupole mass moment
whose third time derivative is non-zero which is what is
necessary for gravitational wave emission. This is analo-
gous to the a non-zero changing dipole moment of charge
required for electromagnetic wave emission. Hence, for
a neutron star to emit gravitational waves, it requires a
quadrupole moment that changes with time.

In the case of neutron stars, a non zero time deriva-
tive of the quadrupole moment is possible if the star is
spherically asymmetric. However, in general it is hypoth-
esised that rotating neutron stars which are highly dense
objects will be perfectly spherical. This is believed due
to the presence the strong gravitational fields of the star
and its high velocity rotation. It is also hypothesised
that as the star forms, there may be deformities present
right after the supernova creates the neutron star. These
deformities may be frozen-in the crust as the star solidi-
fies, giving rise to bumps of a few centimeters above the
surface which in turn cause the neutron star to have a
spherically asymmetric surface.

Some other hypothesis involving how neutron stars
may have non zero time derivative of the quadrupole mo-
ment are:

• Elliptical Neutron Stars: some neutron stars
may become elliptical due to the high magnetic
fields around the poles of the stars. This would
result in a permanent spherical asymmetric surface
giving rise to the emission of gravitational waves.

• Accretion Disks: if a neutron star is present near
another star, then it may start pulling the other
star’s matter towards its surface, forming an accre-
tion disk. In this process, the system would have a
time varying quadrupole mass moment, and hence
the system would be emitting gravitational waves.

• Neutron Star Binary System: a system of two
neutron stars orbiting each other and slowly grav-
itating towards each other. This motion provides
the quadrupole mass moment which in turn leads
to the emission of gravitational waves. This is the
kind of system which provided us with the proof of
existence of gravitational waves.

In all these potential gravitational wave sources pre-
sented above, the emission of the gravitational waves
lasts for long durations. Hence these gravitational waves
are known as continuous gravitational waves. These are
different from the other types of gravitational waves dis-
cussed earlier such as the burst and in-spiral as they are
much shorter in duration. There is a subclass of contin-
uous gravitational wave sources known as long-duration
transients. These are gravitational waves which last in
the order of weeks, but unlike the continuous gravita-
tional waves, their amplitude goes to zero after a shorter
duration. Continuous waves can go on for decades.

C. R-Modes

R-mode gravitational waveforms are long-duration
transients. They are the hypothesised to be emitted
when the mass quadrupole of neutron stars varies rapidly.
This can happen when the neutron star is just forming
because the mass of the star is still accumulating, when
there is some disturbance such as a comet which hits
the star, or when the star’s crust begins to shake due to
movements below the crust.

These waves’ frequency and amplitude evolutions (f(t)
and h(t)) are modeled using fluid perturbations [6]. The
frequency is given by

f(t) = f0 (1 + λα2f60 (t− t0))−1/6 Hz, (1)

where f0 is the source frequency of the neutron star’s
rotation in Hz and α is the saturation amplitude of a
r-mode. The saturation amplitude is a measure of how
much rotational energy of the neutron star goes into a
r-mode gravitational waves. λ is a constant related to
size and density of a neutron star and is λ ≈ 10−20 Hz−5

(refer to [? ] for more details on λ). The strain amplitude
can be given by

h(t) = 1.8 × 10−24
20

d

(
f(t)

1000

)3

α (2)

where d is the distance of the neutron star from the de-
tector in mega-parsecs. In this study, we use Equations 1
and 2 to simulate data for r-modes (see Figure 1 for an
example of a simulated r-mode waveform).
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FIG. 1. Simulated r-mode frequency and amplitude evolution:
plots of the f(t) and h(t) given by Equations 1 and 2. To
generate this frequency and amplitude evolution we used α =
1 and f0 = 1500.

III. SIMULATING SIGNAL DATA

A. Time-Amplitude Plane

With the frequency and amplitude evolution of the r-
mode wave-forms, we can simulate a r-mode signal as
seen by a gravitational wave detector by interpolating
f(t) and h(t) and using these values to generate the phase
evolution. On doing so, we can obtain the expected de-
tector strain due to r-modes. The detector strain ampli-
tude generated from the frequency and amplitude evolu-
tions from Figure 1 can be seen in the top plot of the
Figure 2.

1. Adding Noise to Strain Data

To model the noise that we observe in gravitational
wave detector strain data, we simulate Gaussian noise
that we add to the strain data of our simulated strain
data. Figure 3 contains a plot of the simulated strain
of a r-mode once Gaussian noise has been added to it.
Figure 3 also contains a plot of a histogram of the noise
data, to show its Gaussian nature.

In our simulations where we add noise to signal data,
we always keep the noise the same to allow the results to
be reproducible. To increase the rough estimate of signal
to noise ratio (SNR) of data containing signal and noise,
we increase the signal’s strain amplitude by an integer
factor.

FIG. 2. Simulated r-mode strain: plots of the strain due to a
r-mode and the FFT of a section of the strain.

FIG. 3. Simulated Gaussian noise: plots of the strain due to
a r-mode and Gaussian noise and the histogram of the noise.

2. Calculating a rough SNR

To calculate the SNR, we separately calculate the FFT
of the simulated signal strain, fs, and the FFT of the
simulated noise strain, fn. To get the SNR from these
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values, we use an equation given by

SNR =
max(FFT (Signal)) − mean(FFT (Noise))

std(FFT (Noise))
.

(3)

B. FFT of Strain: Time-Frequency Plane

Once we simulate signal data in the time-amplitude
plane (strain data), we take several fast Fourier trans-
forms (FFTs) of sections of the strain to convert the sig-
nal to the time-frequency plane. To perform the FFTs,
we section the data into equal time segments and FFT
each segment separately as shown in Figure 2. Each of
these FFTs is then taken and arranged sequentially. This
produces a plot as shown in Figure 4 where the y axis
contains the frequency bands which the FFT has pro-
duced, the x axis contains each of the FFT number (or
time segment) and the z axis contains each frequency’s
power for a given time (x axis) and frequency (y axis).
The result is known as a time-frequency power spectrum
(a TFPS) of the signal.

FIG. 4. Simulated r-mode time-frequency power spectrum:
plot of the frequency vs time of the r-mode signal, colored
by the power of the signal frequency.

C. 2D-FFT of Power Spectrum: Fourier-Space
Plane

We can take the two-dimensional Fourier transform
(2D-FFT) of the time-frequency data to convert the sig-
nal in the time-frequency plane to a Fourier plane which
is physically meaningless (refer to [7] for more informa-
tion on the 2D-FFT). The 2D-FFT of the time-frequency
data provides us with complex numbers for each of the
data points of our time-frequency plane. To view the
complex numbers of the 2D-FFT space, we can take the
absolute value of Fourier space to view the magnitude
of the complex number’s, or we can extract the phase of
the complex number’s. In Figure 5, the top plot is the
magnitude of the 2D-FFT of the time-frequency power
spectrum of Figure 4. The bottom plot is the phase of
the 2D-FFT values.

FIG. 5. Fourier Space of r-mode time-frequency plane: plot
of the magnitude (top) and phase (bottom) of the 2D-FFT of
the TFPS of a r-mode signal.

If we compare the r-mode signal’s Fourier space values
to Gaussian noise’s Fourier space values (shown in Fig-
ure 6), we can see that r-mode has distinct values and a
shape in the Fourier space. We can use this to help fil-
ter the r-mode signal when present with noise and even
glitches.

FIG. 6. Fourier Space of noise time-frequency plane: plot of
the magnitude (top) and phase (bottom) of the 2D-FFT of
the TFPS of Gaussian noise.
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IV. R-MODE PARAMETER SPACE

Depending on the parameters (such as α and f0) used
to simulate the r-mode gravitational wave signal, the
shape of the signal in the TFPS and the Fourier space
changes. At α = 1 and at high source frequencies
(f0 = 1300 ∼ 1500), the r-mode TFPS appears to curve.
As the source frequency lowers (f0 = 800 ∼ 500), the
TFPS curve begins to straighten into a line. If α is de-
creased, then the TFPS curve begins straightening into
a line at even higher frequencies.

The flat lines in the TFPS plane correspond to a verti-
cal line in the Fourier space. As the TFPS line becomes a
curve (at higher f0), the vertical line in the Fourier space
begins rotating circularly, and the line becomes a set of
lines which seem to spread at even higher f0 values. A
plot of three r-mode signals with different values for f0
can be seen in Figure 7. The figure demonstrates how at
higher f0 values the TFPS has a varying slope while for
the lower f0 values the TFPS has a more constant slope.

FIG. 7. Power spectrum, 2D-FFT magnitude and phase for
r-mode signals of different f0: the plots are stacked in the
order of f0 = 1500 Hz, f0 = 1000 Hz and f0 = 500 Hz.

V. SIMULATING GLITCH SIGNAL DATA

We developed several signals to model glitches, such as
exponentially decaying signals and signals with linearly
increasing frequency. The signal that we use to study the
effectiveness of the filter is a glitch in the time-amplitude
plane that we call an amplitude glitch. This is generated
by increasing one point in the time-amplitude plane by
a value ×100 of the initial amplitude. An example of a
TFPS signal with a amplitude glitch added to it can be
seen in Figure 8.

FIG. 8. Amplitude glitch in signal power spectrum: plot of a r-
mode signal power spectrum with a amplitude glitch injected
in the signal.

VI. FILTERING

The left plot in Figure 18 shows the TFPS of a sig-
nal and noise. If the TFPS is considered as just an im-
age, the portion of the image containing the signal can
be represented using a small set of low frequencies in a
Fourier series. This region in the image with the signal
also appears to be continuous. In contrast, the portions
of the image with noise can be represented with a large
set of frequencies in a Fourier series. The regions with
noise appear to be discontinuous. Hence, if a filter were
created to extract the low continuous frequencies (a low
pass filter) from a TFPS, the signal would be enhanced
in comparison to the noise. The low pass filter we use is
the magnitude of the 2D-FFT of a signal.

A. Creating Filters

To create filters, we simulated r-mode signal data with-
out any noise and took the 2D-FFT of the power spec-
trum of the simulated r-mode signal. We then took the
magnitude of the grid of 2D-FFT values. This resultant
grid is what we used as the filter. We made two cate-
gories of filters. The first category of filters were called
ideal filters, as they were filters generated with a single
r-mode signal in a power spectrum. The second category
of filters were called summed filters, as they were filters
generated with several r-mode signals added together in
a power spectrum. An example of a summed filter and
the power spectrum used to generate it can be viewed in
Figure 9. It is important to note that the signals added
in the power spectrum used to generate the summed fil-
ter were made sure not to overlap. Hence, while creating
the power spectrum with the signals, if a simulated signal
overlapped one already present in the power spectrum,
the simulated signal was not added to the power spec-
trum. This is important because when the 2D-FFT of
the power spectrum is taken, if signals are overlapping
then the 2D-FFT lose information regarding the distinc-
tion of the separate signals.

All the filters and the power spectra used to generate
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FIG. 9. A summed filter and its power spectrum: plot of a
summed filter power spectrum on the top and the summed
filter on the bottom. The parameters used to generate the
r-mode signals were α = 1 and f0 ranging from 1500 Hz to
810 Hz.

the filters are colored using a blue to red color scheme.
This is done to help distinguish filters and their power
spectra from the power spectra of signals that we filter
(colored with a black to red color scheme).

B. Process of Applying a Filter

As discussed in the previous section, the low pass filter
we use is the magnitude of the 2D-FFT of a simulated
signal. The magnitude 2D-FFT of an image with only a
signal is a grid of real values which contains the shape of
the signal in the 2D-FFT Fourier space (for example see
the top plot of Figure 5). Multiplying this filter with the
2D-FFT of an image with a signal and noise, the mag-
nitudes of the Fourier space frequencies corresponding
to the signal are increased while the magnitudes of the
Fourier space frequencies corresponding to noise are de-
creased. On taking the resultant grid of complex Fourier
space frequencies (complex as the 2D-FFT of the signal
and noise image is complex), and applying an inverse
2D-FFT on the grid, we obtain an enhanced image. The
process of doing this filtering can be seen in Figure 10.

In the next two sections we discuss the application of
the ideal and summed filters to signal data with noise.
To evaluate the effectiveness of the filter, an enhance-
ment factor was calculated to compare the power spec-
trum image before and after the filtering process. The
enhancement factor is calculated as

Enhancement Factor =
Image Quality After

Image Quality Before
, (4)

FIG. 10. Process of Filtering: steps to filter an image contain-
ing signal and noise data. The plot at the top is the original
image and the plot at the bottom is the enhanced image.

where the image quality is calculated as

Image Quality =

∑
(Normalized Image Values > 0.9)

SNR
.

(5)
In Figure 10, using Eq. 4 we get the enhancement factor
of 5.96. This equations for enhancement and image qual-
ity need to be refined as they do not function at specific
SNR ranges.

At low SNRs where the noise is louder than the signal,
the numerator of Eq. 5 (a rough estimate of the energy
of signal in the image) instead calculates energy of noise
above a threshold (a threshold of 0.9). Due to this, at
low SNRs the image quality is incorrectly over estimated.

At higher SNRs where the signal is louder than the
noise, the denominator of Eq. 5 (a rough estimate of
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the average energy of the noise), is too high since it is
calculated by taking the median of the image. The sig-
nal, which is now enhanced, makes this value very high.
Hence, the denominator does not match the energy of the
noise as desired.

An potential method to improve the calculation of the
image quality might be to filter the noise data that is
added to the signal to make the power spectrum of the
signal and noise. This will permit the possibility to calcu-
late the energy of the noise before and after the filtering
process.

C. Using Ideal Filters

To test the ideal filters, they were applied to the same
signal that was used to construct the filter (ideal fil-
tering). The ideal filters were also applied to signals
which were different from the signal used to construct
the filter (non-ideal filtering). The plots in Figure 11
show the values of the enhancement for the results of
ideal and non ideal filtering of r-mode signal created with
f0 = 1000, 1400, and 1500 Hz with SNR values ranging
from SNR∼ 0 − 4. In this section we discuss the results
from ideal filtering and non-ideal filtering.

1. Ideal Filtering

On testing the use of ideal filters on power spectra of
noise and signals with the same parameters used to create
the filter, it was discovered that filtering with ideal filter
proved to enhance the power spectra images. Figure 11
has plots of the enhancement factors obtained from ideal
filtering signals with various SNRs (the lines with the
circular markers).

Figure 11 demonstrates that the images are enhanced
after filtering with an ideal filter. The drop-off in en-
hancement is due to the fact that the image quality for
before and after filtering may not be correctly calculated
as discussed previously. For example, look at the results
of filtering a r-mode signal of f0 = 1400 Hz with an
SNR of 3.81 in Figure 12. The filtered image only has
an enhancement value of 0.37, even though the filtering
clearly brightens the signal in comparison to the noise.
This value implies that the image has been made worse
than it initially was, which is not what actually occurs.

2. Non-Ideal Filtering

Using ideal filters on signals that have different param-
eters than the filters were used to create has provided
insights regarding the robustness of filters. In Figure 11,
the non ideal filtering is shown by the lines with no mark-
ers. Looking at the plot of the 1500 Hz, we can see that
the 1500 Hz signal is filtered well with the non ideal filters
created with 1400 Hz and 1300 Hz. We think that this

FIG. 11. Filtering Enhancements: plot of the enhancements
obtained from summed filtering (dashed lines), ideal filtering
(lines with circular markers) and non-ideal filtering (lines with
no markers) of r-mode signals with SNRs ranging from 0.2
to 4. The three plots are of r-mode signals generated with
f0 = 1000 Hz, 1400 Hz and 1500 Hz. Ideal filters appear to
work well.

is because the nonlinear shape of the signal power spec-
tra of the 1400 Hz and 1300 Hz is similar to the shape
of the 1500 Hz signal power spectrum. The enhance-
ment decreases when a filter of 1000 Hz is applied to the
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FIG. 12. Ideal filtering of f0 = 1400 Hz: plot of an r-mode
of f0 = 1400 Hz’s power spectrum image before and after
filtering. The enhancement is calculated to be 0.37, a value
much lower than expected.

1500 Hz signal. This may because the 1000 Hz’s shape
is much more linear than 1500 Hz signal’s shape. Hence,
we think the effectiveness of the filter may be attributed
to the shape of the signal in power spectra.

The significance of the signal shape in filtering is
demonstrated again by the filtering of the 1000 Hz signal
(which has a linear shape in its power spectra). As seen
in Figure 11, the filters generated using f0 of 1300 Hz,
1400 Hz and 1500 Hz (which have non linear concave up
shapes in their power spectra) have a low enhancement.
This low enhancement value is due to the difference in
the signal shape for the signal that creates the filter and
the signal being filtered. This again demonstrates that
the effectiveness of the filter may be attributed to the
shape of the signal in power spectra.

D. Using Summed Filters

We created two summed filters, one with nine signals
and one with four signals (see Figures and in the ap-
pendix). On filtering signals f0 of 1500 Hz, 1400 Hz and
1000 Hz with the summed filters, the resultant enhance-
ment ratio is lower than when their ideal filters were ap-
plied. This is because the summed filter consists of both
linear and non-linear signal shapes (as discussed in the
previous section). The presence of both types of signal
shapes (linear and non-linear) causes the enhancement to
be decreased. We believe that if only one type of signal
shape was used in a summed filter, the filter would better
filter signals of the same shape. Hence, it may be impor-
tant to create two classes of filters (those created with
signals with a non-linear shape and those created with
signals with a linear shape). A plot of the enhancement
factors obtained when using the summed filters is pre-
sented in Figure 11 with the dashed lines. These plots of
the enhancement factor do provide a lot of information,
however they may be misleading as we beleive the calcu-
lation of the enhancement factor to be inaccurate. If one
views the power spectrum before and after the summed
filter is applied, in some cases where the enhancement
factor is calculated to be low, the filtered image still ap-
pears enhanced (for example, look at Figure 12 and 15).

E. Filtering signals with glitches

To study the robustness of the filters, we filtered a
power spectrum containing a simulated r-mode signal,
amplitude glitch and Gaussian noise as shown in Figure 8.
We filtered the power spectrum image with the summed
filter shown in Figure 9. The resultant filtered power
spectrum image is shown in Figure 18. Although the
enhancement factor has been calculated to be 0.9, we
think that the image is still enhanced by studying the
filtered image. In the filtered image, we see the signal
to be much clearer than previously. In fact, after the
filtering process the glitch and the signal both appear to
be of the same level of loudness. Although the glitch is
still present, in the next section we discuss how it may be
possible to remove the glitch from the power spectrum.

F. Filtering glitches with glitches

If we create a filter using a glitch signal and use it to
filter a power spectrum containing a glitch, signal and
noise, we get a filtered power spectrum as shown in Fig-
ure 17. This greatly enhances the glitch signal in a power
spectrum. Using this enhanced image of the glitch, we
can determine the region of the image with high power
(which is the glitch signal). This will allow us to remove
the region with the glitch in the original power spectrum.
Once the glitch is removed, it may be possible to filter
the edited power spectrum with an r-mode filter.

VII. FUTURE WORK AND CONCLUSIONS

Our results have shown us that the filters generated by
signals which have a non-linear shape in their power spec-
trum enhance the power spectrum of data with a signal
which also have a non-linear power spectrum shape. Like-
wise, power spectrum of data containing a signal with a
linear shape are filtered well by a filter generated with
a signal of a linear shape. Hence, the filtering clearly
depends on the shape of the signal being filtered and
the shape of the signal used to create the filter. We
were able to determine this by visually comparing the
power spectra before and after the filtering. To make
the process quantitative, we determined an equation for
the enhancement of the image, but we believe this equa-
tion to be inaccurate. This is because images which have
been enhanced have enhancement factors lower than ex-
pected. Hence, the enhancement factor calculation needs
to be improved. This may be done by analysing the
noise and signal separately. We also need to implement
a method to remove a glitch from a power spectrum if
found. Additionally, this study requires an investigation
on the Fourier space and what it means. We have been
using just the Fourier space magnitude and not the phase.
The phase holds the information regarding the shape of
the image (Figure 13 shows the significance of the Fourier
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space’s phase). Hence, it may also improve the filtering
process if we can utilise the phase of the Fourier space in
some way.
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Appendix A: Filtering results

Here we have some figures and results from filtering.
Figures 14-18 show the results of filtering various sig-
nals. The plot on the left is that of the original power
spectrum. The plot in the middle is the filtered power
spectrum. The plot on the right is that of the signal used
to create the filter that was used to filter the power spec-
trum in the left image of the figure. The last two figures,
Figures 17-18, show how a signal can be filtered when a
glitch is present, and how a glitch can be enhanced so
that it is easier to remove.

FIG. 13. Importance of Phase: If we take the 2D-FFT of
the top two plots we can extract the 2D-FFT’s phases and
magnitudes. If we do so and construct a new Fourier space
plane by matching the phase of one image with the magnitude
of another, we can inverse 2D-FFT to get the bottom two
plots. The bottom plots show how the phase contains most
of the information regarding the shape of the image.
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FIG. 14. Filtering: 1 signal ideal filtering

FIG. 15. Filtering: 4 signal summed filtering

FIG. 16. Filtering: 9 signal summed filtering

FIG. 17. Filtering: amplitude glitch filtering

FIG. 18. Filtering: signal filtering in presence of glitch
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