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Abstract

We continue the investigation of the feasibility of constraining the neutron star equation of state
through gravitational waves. In particular, focus was on the ability to accurately recover tidal deforma-
bilities of spinning waveforms using parameter estimation with non-spinning waveforms. We compare
the match of TaylorF2 waveforms at the 3.5PN order with spin to the 2.0PN order and tidal effects
to the 6PN order beyond leading order. It was shown that spin effects drastically decrease the match
between two waveforms with increasing dimensionless spin values. We study the effects of a range of
spin values in injected waveforms on the recovery of tidal deformabilty using non-spinning templates.
Recovered tidal deformabilities were over and underestimated at high dimensionless spin values and effect
sizes increased with increasing dimensionless spin values. Our analysis makes it known that recovering
spinning waveforms with non-spinning ones renders recovery of tidal deformabilities highly inaccurate.

I. INTRODUCTION

Since the completion of Advanced LIGO, there have
been three confirmed gravitational wave events de-
tected from binary black hole mergers. With the im-
pending completion of Advanced VIRGO and KA-
GRA as well as the possibility of LIGO-India, it is
likely that detections will continue with increased sky
position accuracy. Additionally, the approval of LISA
may eventually provide sensitivities outside of cur-
rent ranges and allow us to detect gravitational wave
sources such as high mass binary black hole merg-
ers, white dwarf binaries, and possibly even relics of
the Big Bang. Moreover, as the sensitivities are im-
proved in current ground-based detectors, it is pos-
sible that detections of not only binary black hole
mergers (BBH) will occur, but also of binary neutron
star mergers (BNS) and possibly neutron star-black
hole mergers (NSBH) as well.

Gravitational waves of BBH coalescences have
provided us with a wealth of scientific information.
At the surface level, they have provided an indis-
putable proof of the existence of black holes. The
first three detections have included both high and
low mass systems which result in short and long wave-
forms respectively. These have been used to complete
previously impossible tests of strong field general rel-
ativity such as those in references [1][2]. Gravita-
tional waves from BNS mergers could prove to be
no less valuable. These coalescences could be used
to probe the neutron star equation of state (EOS)
which, even today, remains mostly a mystery.

The EOS can appear in gravitational waveforms
in many ways. The two primary sources of its appear-
ance are the tidal deformations and the quadrupole-
monopole effect, with the former being the focus of
this paper. The tidal deformability of stars is related
to the star’s mass, m, in a way controlled by the EOS
through the stars radius as: A(m) = Zka(m)R®(m),
where ko is the second Love number. In the late
stages of inspiral one star’s tidal field &;; generates
a quadrupole moment @);; in the other. The gener-
ated quadrupole moment and tidal field source are re-
lated by the aforementioned tidal deformability A(m)
: Qi = —A(m)&;;. The change in shape of the two
neutron stars then has an effect on the orbit and thus,
the emitted gravitational waveforms. This effect is
most prominently seen in the phase ®(f) and only at
high orders of (%), but includes a fairly substantial
factor [3]: A(m)/M® o (£)° ~ 10% — 10° where M is
the total mass of the system as M = mq + msy. This
factor makes its impact noticeable at sufficiently high
detector sensitivities, perhaps even at sensitivities
already achieved in ground based detectors. Tidal
deformation is not the only effect appearing in the
phase, however.

The quadrupole-monopole effect is caused by a
neutron star’s spin. As the star spins, it becomes
slightly oblate. Assuming a symmetric distribution
about the axis of rotation, the deformed shape can
be described by the quadrupole moment parameter:
q. This parameter has been found to be linked to
the dimensionless spin through a constant, a, where
the constant is dependent on the mass as controlled



by the EOS [4]. The generated quadrupole moment
then causes a coupling in its mass quadrupole mo-
ment with the mass of its binary, changing the grav-
itational potential. This change in gravitational po-
tential appears in the emitted gravitational waveform
through the phase in ways dependent on the post-
Newtonian order as discussed later in this paper.

To model these effects, a great deal of time and
effort has been put into numerical simulations of BNS
mergers which can generate waveforms with fewer
approximations in the late inspiral stage [5]. For
the early inspiral stage, such complicated simulations
are not needed, therefore simpler post-Newtonian ap-
proximations are used. The two models are then
merged to form one coherent waveform. These wave-
forms are the most accurate representations of BNS
systems made yet, but can take days to weeks to gen-
erate and millions of such waveforms are needed for
effective data analysis of signals. This makes these
waveforms impossible to use for current event detec-
tion and drives the study of possible alternatives.

This paper is a preliminary look into one such al-
ternative solution using currently available waveform
models. If the recovery templates used in parameter
estimation do not account for the spin of the star, it
is possible to reduce the generation time of advanced
templates. Yet, one must consider the effect exclud-
ing spins will have on the effectiveness of the tem-
plate. It is possible that recovering a waveform with
spin using templates without it may introduce a bias
in the results of the parameter estimation. However,
this has yet to be proven and is therefore investigated
here.

The following paper is formatted as such. In sec-
tion (IT) we discuss the model used to generate both
template and injected waveforms as well as how the
EOS of neutron stars affects that model. In section
(ITT) we discuss the Bayesian analysis methods that
are used in the parameter estimation of gravitational
wave events as well as the match comparison of tem-
plates. Section (IV) covers the specific set-up and
parameter space used in both the injection and recov-
ery waveforms. Section (V) shows our main results.
Section (VI) discusses these results and proposes pos-
sible further study.

In this paper ¢ and G are equal to 1 unless stated
otherwise.

II WAVEFORM APPROXIMANTS
AND THE EFFECT OF NEUTRON
STAR EOS

A. Waveforms Generated

We model gravitational waves using the stationary
phase approximation (SPA) in order to get an expres-
sion for the gravitational wave strain. To do this, a
Fourier transform of the waveform must be used in
order to convert to the frequency domain. The SPA
states that given a function B(f) = A(t) cos¢(t), a
good estimate of the Fourier transform is given by
[6]:
B Al -3
F(ty)

where U;(ty) = 2nfty — &(ty), f is the frequency,
F(t) is the instantaneous frequency of emitted radia-
tion, and ¢ is the time at which F(ty) = f.

The Fourier frequency dependent waveform can
then be shown to be:

h(f) = Af~/Se ) (2)

where A oc M5/6Q(angles)/D, D is the distance to
the binary system in seconds, M is the chirp mass
given by M = 53/5M, and angles include sky posi-
tion as well as source orientation angles. The phase
of the Fourier waveform is given by [6]:

(1)
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where v = (7 M f)/3, 1 is the dimensionless mass ra-
tio given as n = mymy/M?, k=0,...,N with N =7
for the 3.5PN order and N = 4 for the 2.0PN order,
and M is the total mass of the binary as stated pre-
viously. The coefficients for the phase are given by
the values of «; listed in Appendix A.

For the purpose of this paper, the phase was
taken up to 3.5PN order with inclusion of spin to
that order for parameter estimation and with inclu-
sion of spin to the 2.0PN order for match compar-
isons. For spin affected «; values, see Appendix A.
For simplicity, we assumed that all spins were aligned
or anti aligned with the direction of orbital angular
momentum and with each other. The upper limit of
all integrals was taken to be the GW frequency at
last stable orbit before merger. For a point particle
of mass M in Schwarzchild spacetime, this is given to

be:
1

flso = 63/27TM (4)

Although the lower cutoff frequency is typically taken
to be 20Hz, here it was taken as 40Hz. The effects of



tidal deformations do not appear until high frequen-
cies, so the loss of the lower 20Hz was not considered
theatrening to our results. More importantly, the re-
duction of frequency range significantly decreased the
time of analysis. The lost 20Hz were not an especial
subject of interest for this study therefore, to save
time, they were not included.

Two effects of the EOS on waveforms were taken
into account: the quadrupole-monopole effect, and
tidal deformations. We will discuss these below.

B. Quadrupole-Monopole Effects

When a neutron star spins, it causes the star to de-
form and become slightly oblate. Assuming an ax-
isymmetric mass distribution about the rotating axis,
this change in shape forms a quadrupole moment
which can become coupled with the mass monopole of
its companion star. This coupling changes the grav-
itational potential and results in an alteration of the
emitted gravitational radiation.

The quadrupole moment can be described by
the dimensionless quadrupole moment parameter, q,
given by [4]:

5 . N3 [!
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where v is a potential connected to the metric of
the axisymmetric star, and P; is the second Legen-
dre polynomial given by Py(x) = (32?2 — 1)/2. A
stiffer EOS implies a larger radius, and, as can be
seen in equation (5), the quadrupole moment param-
eter is dependent on the radius of the star. There-
fore, ¢ must also increase with increasing EOS stiff-
ness. Estimates of ¢ have been calculated numerically
for varying EOS [7] and the results demonstrated the
dependence of ¢ on the dimensionless spin, y. This
relationship can be seen as:

q=—ax’ (6)

where a is a mass dependent parameter controlled by
the EOS. Consequently, the EOS and the value of
the dimensionless spin directly affect the quadrupole
moment and hence the phase of emitted gravita-
tional waves. For TaylorF2 wave approximations, this
change in phase appears as factors in the Fourier co-
efficients of the phase. As can be seen in Appendix
A, effects due to spin-orbit interaction first appear at

1.5PN order as a value of 3 [3] given by:
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The spin-orbit effects then appear again along with
spin-spin, and QM effects at 2.0PN as a factor of
sigma [3] given by:
n

o= —247(21~>22)+721(£~>21)(ﬁ->’<2)} (8)

where L is the unit vector in direction of orbital an-
gular momentum, y; is the dimensionless spin vector
for each star. QM effects to the 2.0 PN order and
spin effects to the 2.5PN order in the time domain
have also been calculated. These were included in
our parameter estimation, but not our match com-
parison. See references [3], and [8] respectively for
these values. As mentioned before, QM contri-
butions are not the only source of alterations to the
phase. Tidal deformations may also imprint impor-
tant information on the phase of a gravitational wave.

C. Tidal Deformations

During the late stages of inspiral, the tidal tensors,
&ij, of one star can induce a quadrupole moment @;;
in the other. With an adiabatic approximation, the
two are related by:

Qij = —A(m)&i; (9)
where m is the mass of the star with the induced
quadrupole, and A is the tidal deformability deter-
mined by the EOS and dependent m. The induced
quadrupole moment can change the shape of the af-
fected star, altering the orbital motion. The phase
of the emitted gravitational waves is thus altered as
well, carrying away information about its progenitor
star. The change in phase caused by these tidal ef-
fects can be seen as [9]:

Y(v) = ¥pp(v) + Ptida (V) (10)
where v is the characteristic velocity given by v =
(tMf)}/3, Upp is the phase from the inspiral of a
point particle, W44 is the tidal effect’s contribution
to the phase. The tidal effects contribution alone ap-
pears as [9]:



2
3 s Ai
~ 128" ; Moy,
+ 247 (12 — 11y;)v*?

Wyidar (V)

—24(12 — 11y;)v'0 + —
2102 - 1000+

9860575 , 421821905 4

5

(3179 — 919y, — 2286x? + 260x3)v'? (11)

39927845 480043345
508032 0144576 ©°

+%(27?19 22127y + 7022x2 — 102323 )v

Where x; = m/M, i =1,2, A = AX(m;), M is the
total mass, and n = mlmg/MQ. These tidal effects
only appear starting at the large post-Newtonian or-
der of 5PN [9]. Nonetheless, their large factors are
on the scale of two to five orders of magnitude which
may allow us to possilby gain information about the
EOS of their sources.

IIT DATA ANALYSIS
A. Match Comparison

All templates and waveforms were generated using
the TaylorF2 approximation to the 3.5PN order in-
cluding spin to the 2.0PN order when applicable. To
compare waveforms, the match was defined in the
frequency domain as:

(hilh;)

(hilhi)v/hijlh;

where h; is defined as the strain of the waveform, and
i, j are the spin values. This value serves as a quanti-
tative value of correlation between two vectors or in
our case, waveforms. A match of one signifies iden-
tical waveforms, while for a match of zero, or less,
the opposite is true. The inner product is defined as
below:

Match = (12)

o (g (F)df

Sn(f) (13)

(hils) = 15e [
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where ﬂz*(f) is the complex conjugate of HZ(f), and
Sh(f) is the power spectral density distribution.

B. Parameter Estimation

The foundation for the process of parameter estima-
tion is Bayes’ theorem. Given two events, A and B,
the probability of them both occurring is the proba-
bility of B occurring given that A has occurred mul-
tiplied by the probability of A occurring alone. This
can be represented by the statement:

P(A A B) = P(B|A)P(A) (14)
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Bayes’ theorem then says that the probability of both
occurring given that A has already occurred is equal
to the probability of both occurring given that B has
already occurred. This can be shown as:

P(ANB)=P(BAA)
P(B|A)P(A) = P(A|B)P(B)
P(A|B)P(B)

P(4)
However, it is often necessary to begin with a set of
assumptions, I. For example, these assumptions can
include maintaining that the mathematics one uses is

accurate, or claiming a curved spacetime. Presuming
they are correct, equation (13) then becomes:
P(A|B,I)P(B|I)
P(AI)

In our analysis, this process was used given that
events A and B are parameters, 6, and data, d. Here,
the data consists of the waveform and noise, and 6
represents masses, spins, sky position, orientation,
distance, time of coalescence, and phase at coales-
cence. Replacing A and B with 6 and d respectively
gives:

P(B|A) = (15)

P(B|A,T) = (16)

P(d|,1)P(6|])
P(dlI)
where P(0|d, I) represents the posterior density func-
tion, P(d|6,I) the likelihood function, P(6|I) the
prior probability density, and P(d|I) the evidence.
The prior probability density represents the proba-
bility of the parameters 6 corresponding to that of
an observation, before having considered the data
from an observation. This prior probability may take
into account previous knowledge such as known as-
trophysical mass ranges, or estimated tidal deforma-
bility ranges. The likelihood can be described as the
probability of the data, d, containing the parameters,
0, while also being observed as an event and has been

previously shown [3] to be:

P(0)d, 1) = (17)

f d(f)—h(f,0)|?

P(d|o, 1) :/\/e[

where NV is a normalization constant, d is the Fourier

transform of the data, h is the frequency domain

(18)



waveform, and S, (f) is the power spectral density.
This likelihood function was calculated and im-
plemented through a nested sampling technique. In
this technique, a parameter space is constructed with
as many as seventeen dimensions for BNS systems.
Random ’seed’ points are then distributed through-
out this space and the likelihood as well as the pos-
terior probability is calculated at each. Then, each
point is moved in a random direction within a deter-
mined range and both functions are calculated again.
This process continues until a maximum is converged
upon and all calculated points are returned to form a
posterior density distribution. The maximum of this
distribution is then the recovered parameter set.

IV. SIMULATIONS
A. Match Comparison

All templates and waveforms were generated using
the TaylorF2 approximation to the 3.5PN order in-
cluding spin to the 2.0PN order when applicable.
Four waveforms were generated and compared: with
no spin, with only spin, with only tidal effects, and
with spin and tidal effects. The two masses were
taken to be equal to a known average of 1.4Mg and
were given to be the same across waveform type. The
dimensionless A; = A\(m;)/m? value was taken to be
a constant of 1690, well within the reasonable range
for neutron stars of dimensionless A € [50,5000].

The Q(angles) gets eliminated from the match
formula, and was therefore set to a placeholder of
one. We were not interested in the effects the ex-
trinsic parameters may cause, so the time of coales-
cence and the phase at coalescence were taken to be
a constant 0.01 seconds and 0.01 radians respectively.
Additionally, the lower cutoff frequency was given as
fiow = 20H z in order to include as much of the wave-
form as possible while considering the sensitivity of
the detectors.

B. Injections

All injection files were made in the eos_dev branch of
the simulation code. However, this branch did not in-
clude the ability to introduce spin values in injections
without changing other parameters, nor did it allow
us to generate and inject tidal deformabilities depen-
dent on the EOS. Therefore, after an injection file was
generated, a script was executed. This script edited
the injection file, allowing desired spin and tidal de-
formability values. Additionally, changes had to be
made to the parameter estimation code to allow read-
ing of the injected tidal parameters in the frequency
domain. Initially, this was only available in the time

domain.

As a reference for the parameters chosen in the
injection waveforms, we used known neutron star
data. For obvious reasons, the sky location (6, )
and orientation (¢,1) are both distributed uniformly
on the sphere. Knowing that the average known neu-
tron star in a binary falls in the range m € [1,2|Mg,
the mass distribution for both stars was given as uni-
form in a mass range m; € [1.1,1.6]My. Choosing it
as such provides our chosen range with a wide scope
of possible stars without uneccesarily increasing com-
puting time.

The fastest known pulsar in a binary system
rotates with a dimensionless spin value of ~ 0.02.
Therefore, a range of x; € [—0.05,0.05] more than
accounts for all known spins of neutron stars in bi-
naries. To test the limits, we also included a range
of x; € [-0.5,0.5], and x; = 0 as a control to com-
pare to. Including ranges of both positive and nega-
tive values allows for the spins to be aligned, or anti-
aligned with each other and the direction of orbital
angular momentum in the z-direction only. Other
alignments were not considered in this paper, but
they make logical platforms for any future study.

To probe our ability to distinguish between stiff
and soft EOS in recovery, a range of EOS was in-
jected. The EOSs chosen were MS1, H4, and SQM3
which correspond to stiff, moderate, and soft respec-
tively. These EOS were then used to calculate the
injected A values based on the mass.

The generated waveforms were injected into sim-
ulated standard noise from Advanced Virgo in Italy,
and the Advanced LIGO detectors in Lousiana and
Washington states. As the effect of noise on recovery
was not the focus of this study, we set a range of
SNR € [15,50]. This is a typical SNR range known
to allow detection of binary systems.

C. Recovery

Prior distributions of parameters were chosen to be
the following. A TaylorF2 waveform to the 3.5PN
order was assumed. The IFOs of Advanced Virgo,
LIGO Lousiana and LIGO Washington were used for
analysis with a lower frequency cutoff of 40Hz. All
spins were set to y; = 0 to investigate the bias of re-
covering spinning waveforms using templates without
spins.

Mass was allowed as a flat component distribu-
tion m; € [1.0,1.7]Mg. A flat distribution was cho-
sen over a Gaussian because the mass distribution of
neutron stars is not confidently known. Too few ob-
servations of these systems have been done in order to



assume anything but an even distribution [3]. In the
recovery of tidal deformability, EOS were not chosen.
Instead, tidal deformability was presumed in a distri-
bution of A € [50,5000] for injected SQM3 and H4
EOS. However, it was discovered that this range was
limiting for the stiffest injected EOS: MS1. There-
fore, for runs done with the injected MS1 EOS, the
prior range was set to A € [50, 10000].

From the posterior samples, a comparison was
made between the recovered dimensionless A value

and the injected. This comparison can be seen as:
Arec - Ainj

O.TCC

%= (19)

where X is called the effect size, o, is the standard
deviation of the recovered dimensionless A, and A,..
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and A;,; are the recovered and injected dimension-
less A values accordingly. This relation shows any
systematic offsets in the measurement of A quantita-
tively. These values are listed as ’effect size’ in the
figures below.

V. RESULTS
A. Effects of spin on matched filtering

Four waveforms were compared: non-spinning, non-
spinning with tidal effects, spinning, and spinning
with tidal effects. Each of these waveforms were taken
to the 3.5PN order including spin to the 2.0PN order
in the frequency domain. Examples of these wave-
forms can be seen below in Figure 1.

 with no effects

.I":-I:securbds]
(=]

T
107 108
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T
107 10°
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Figure 1: TaylorF2 waveforms used in a match comparison analysis.
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Figure 2: Matched filtering results of a range of spin values [0,0.02]. (a) The matched result of a template
with spinning and tidal effects with A = 1690. (b) The matched result of a template including spin, but not

tidal effects.
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Figure 3: Examples of posterior parameter estimation of the dimensionless A value.(a)In bottom panel, an
overestimation of recovered parameters appears with high spin. (b)In the middle panel, an underestimation
of parameters appears with medium range spin. (¢) A flat distribution across A appears in the middle and
bottom panels with large spin. (d) Underestimation seen in middle panel for both A even though one injected
spin is small. 7
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It can be seen by the naked eye that the
waveforms are different, but the match provided
quanitative proof of this. Each of the waveforms that
included spin effects were matched with the unaf-
fected waveform with increasing values of spin. As
can be seen in Figure 2, the match value drops to
one half at spins as low as x = 0.0058 and to zero
for spins as low as xy = 0.0098 for this model. It was
also found that including tidal effects as well as spin
produces an even greater decrease in the match, and
therefore an even larger departure from the original
waveform. This can be seen in the lowering of the
upper bound between (a) and (b).

B. Bias in recovery of spinning waveforms us-
ing non-spinning templates

Batches of twenty-five injections for each of three spin
sets, and three EOS were run with a recovery that
used templates without spin. Examples of the pos-
terior samples can be seen in Figure 3 for a range of

EOS and spin. Many high spin value runs returned
results similar to that of (a) with injected spins of
-0.309 and -0.101. Here, the high injected spin value
caused an extreme overestimation of the injected A
values. Similarly, high injected spins were also found
to cause an extreme underestimation of injected A
values, such as that in (b) with injected spins of 0.048
and 0.037. Additionally, if only one star had a high
injected spin, both stars’ parameters were recovered
incorrectly with large effect sizes. This can be seen
in the middle panel of (d) and (d).

A relation can be drawn between the effect size
and the injected spin values as seen in Figures 4 and
5. In Figures 4 and 5, it can be seen that with no spin,
the effect size remain very close to zero. However, as
the spin increases, so does the effect size. As seen
in Figure 4, it was found that even in the range of
spin from [-0.05,0.05] some large effect sizes already
occur. As the range increases to [-0.5,0.5], the effect
size only increases. It also becomes obvious in Figure
4 that this is true regardless of EOS.
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Figure 5: All injected spin values of each star in all
three spin ranges, for each EOS. (a) EOS: MS1 (b)
EOS: SQM3 (c) EOS: H4

Figure 5 only futhers these results. This fig-
ure makes it obvious that increasing spin does indeed
result in increasing effect size. Yet, it cannot be de-
termined from these results if the relation between
spin and effect size is linear, or otherwise. Addition-
ally, at a spin of 0.0377 it was found that 90% of val-
ues have an effect size of less than two. This means
that 0.0377 is the maximum spin at which most of
the recovered parameters are less than two standard
deviations away from the injected values.

VI: DISCUSSION

We have continued the study into the possibility of
determining the EOS of a neutron star by its grav-
itational wave signal. Our main focus was an ini-
tial inquiry into the feasability of accurately recov-
ering tidal parameters from spinning neutron stars
using non-spinning waveforms. The foundation we
used for our analysis were the match comparison and
the Bayesian analysis method of parameter estima-
tion. Match comparison allowed us to analyze the
effect spin and tidal effects had on the amplitude of
strain. It was found that spin highly affected the gen-
erated waveforms. Spin values as low as x; = 0.0058
decreased the match between a spinning and non-

spinning waveform to 0.5. This stood as a proof of
concept for the rest of the study, and encouraged fur-
ther investigation.

Parameter estimation with different prior and in-
jected spin values was completed for a stiff (MS1),
moderate (H4), and soft (SQM3) EOS. It was found
that spin severely affected the accuracy of recovery
of tidal deformability values. High spins often caused
either a gross over or underestimation, and occasion-
ally returned a flat distribution. It was seen that at
spins above 0.0377, recovered parameters began to re-
cover values more than two standard deviations from
the injected ones. Thus, spins outside of the 0.05
range were rarely seen to return any information of
value. Luckily, this is outside of the known astro-
physical range of spins for pulsars in binary systems.
However, this is still essential to future efforts of mod-
eling binary neutron star systems and one should be
aware of the recovery biases when modeling spinning
systems.

As mentioned before, this was only an initial in-
quiry into these effects, and stands as a proof of con-
cept for further study with more advanced waveform
models not currently available. With only these sim-
ple models at hand, precession and non-aligned spins
would prove to be a solid foundation for prospective
work.
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Appendix A
Fourier Phase Coefficients [6]:

ap =1,
a; =0,
20 /743 11
Qg = 9 (336 + 477> )
ag = —16m,

o 10 (3058673 | 5420 617 ,
4=\ 1016064 " 10087 T 14 )

v (B85 8645w N 65T
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where 7 = ™72 v is the characteristc freqency, vy, is the frequency of last stable orbit, gamma is Euler’s

constant = 0.577, § = —1.28, and A = —0.6451

Spin Effected Fourier Phase Coefficients [3]:

ag =1,
a; =0,
20 (743 11
a2 = (336 + 477> )
as = (—4m - B),

o 0 (3058673 | 5420 617 ,
4=\ 1016064 " 1008”7 " 144"
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