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Abstract

Test mass charging is a signi�cant source of excess force and force noise in LISA Path�nder
(LPF). The planned design scheme for mitigation of charge induced force noise in LISA is a contin-
uous discharge by UV light illumination. We report on analysis of a charge management experiment
on-board LPF conducted during December, 2016. We discuss noise in the charge measurement taken
with and without continuous UV illumination. We also give an exponential �t characterizing the
behavior of the test mass charge under continuous UV illumination. Our results con�rm the expec-
tation that the continuous discharge scheme allows for lower net test mass charge with the trade-o�
of increased measurement noise.
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1 Introduction

The report will begin with a short introduction
giving the current standing of gravitational wave
detection in the mHz frequency band, the LISA
Path�nder (LPF) experiment, and a description
of the charge management problem. Section 2
presents the purpose and methodology behind a
charge measurement experiment conducted on-
board LPF in December 2016. Section 3 de-
scribes the derivations and methods used to cal-
culate the ∆g and charge time-series from LPF
telemetry. Section 4 presents results of the vari-
ous charging properties studied. Finally Section
5 is a discussion of these results in the context of
the forthcoming LISA mission.

1.1 Background

Gravitational waves are emitted from diverse
sources with frequencies spanning bands over
many orders of magnitude. LIGO (Laser Inter-
fermoter Gravitational-Wave Observatory) has
already achieved unparalleled success in detect-
ing gravitational waves in the frequency band of
Hz to hundreds of Hz. Every signal that LIGO
has detected to date has come from the inspi-
ral and merger of binary black holes [1]. Al-
though the LIGO detectors represent the stan-
dard of gravitational wave detection in the high
frequency band, they are incapable of detect-
ing gravitational waves in lower frequency bands.
LISA (Laser Interferometer Space-Based Obser-
vatory) is a mission currently planned by ESA to
detect gravitational waves in the mHz frequency
band, where LIGO is insensitive.

There are many and diverse astrophysical
sources emitting gravitational waves in the mHz
frequency band. These include objects which are
currently poorly understood by electromagnetic
observations alone. The detection of mHz fre-
quency gravitational waves from these sources
will provide a new window into our universe.

The advantages of a space-based detector are

immediately apparent in that it would not be
subject to the same noise sources that dominate
ground-based detectors in low frequencies. In
space, it is also possible to surpass the spatial
dimensions that limit ground-based detectors, al-
lowing for increased sensitivity.

LISA will be the �rst gravitational wave de-
tector in space. However, without prior testing
and simulation, LISA would represent a major
risk as an experiment. Considering the time and
cost of building this detector and launching it
into space it is imperative that LISA achieves re-
sults. It was largely for this reason that LISA
Path�nder (LPF), the science precursor mission
to LISA, was implemented. With the resounding
success and recent closure of the LPF mission,
the next frontier of gravitational physics - the
mHz frequency band - is one step closer.

1.2 LISA Path�nder

LISA Path�nder was designed to test the tech-
nology required by LISA. It was not designed to
detect gravitational waves; instead, LPF tested
scienti�c principles and modeled noise in the
LISA detection band. LPF was in operation
for about 16 months, carrying out various ex-
periments controlled nearly in real-time by on-
ground teams.

LISA Path�nder was a single space craft
which centered itself around two test masses as
they traveled in a nearly perfect free-fall. It
includes multiple subsystems for force shielding
and data acquisition. While in operation, LPF
orbited the �rst Sun-Earth Lagrange point (L1);
the location was chosen for its thermal and grav-
itational stability, among other factors.

The LPF Technology Package (LTP) includes
the gravitational reference system (GRS) and
the optical metrology subsystem (OMS) [2].
The GRS protects the test masses from non-
gravitational forces, while the OMS measures the
positions of the test masses using multiple inter-
ferometers.
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Figure 1: The plot shows the ASD of ∆g from a 6.5 day noise-run near the beginning of the
LPF mission launch. The shaded grey regions indicate the requirements for LPF and LISA. The
grey curve shows the measured S

1/2
∆g ; red and blue curves show S

1/2
∆g after correction for some

known noise sources. Reprinted from "Sub-Femto-g Free Fall for Space-Based Gravitational Wave
Observatories: LISA Path�nder Results�, by M. Armano et al., 2016, PRL, 116(23), 231101-3. DOI:
https://doi.org/10.1103/PhysRevLett.116.231101

The main goal of LPF was to demonstrate
LISA's required level of sensitivity to the dif-
ferential acceleration of the two test masses.
The LPF requirement for the amplitude spec-
tral density (ASD) of the di�erential accelera-

tion, S
1/2
∆g was 30fms−2Hz−1/2; this requirement

was quickly met by LPF in the �rst days of its
operation and represents the purest state of free-
fall ever measured [3]. Figure 1 ( reprinted from
[3]) shows the ASD of ∆g as measured from a
noise-run near the beginning of the LPF mission.
Beyond achieving this level of free-fall among the
two test masses, LPF was also designed for ex-
periments to characterize multiple noise sources
on-board the spacecraft. This work will focus on
characterizing charge-induced force noise.

1.3 Charge Management

The test masses were kept inside a vacuum en-
closure and shielded by their respective electrode
housings as well as the spacecraft itself, however,
signi�cant charging of the test masses still oc-

curred. Incident cosmic rays and solar particles
bombarded the test masses, depositing a net pos-
itive charge, building up over time. The charg-
ing rates were observed to be about +22.9e/s
and +24.5e/s on TM1 and TM2 respectively [4].
This charging will occur in LISA as well, produc-
ing unwanted force and force noise acting on the
test masses.

The Charge Management System (CMS), an
element of the GRS, is designed to mitigate the
e�ect of test mass charging. It is necessary that
the CMS is able to maintain the charge on the
test masses close to neutral while producing as
little extra noise as possible. The CMS works
on the principle of contact-free discharge by UV
light illumination. Six mercury lamps on-board
emit 235.7nm light incident on either the test
masses themselves or their surrounding electrode
housings [5]. Discharging occurs by the photo-
electric e�ect; a current of electrons �owing be-
tween test mass and electrode housing is pro-
duced.

The forces due to the charge on each test
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mass, F1 and F2, are obtained by modeling the
test masses and their surrounding electrodes as
a battery and a capacitor.

By this model, the total energy stored be-
tween the test mass and the electrodes is,

U =
1

2
CV 2 (1)

Here, V is the potential di�erence between
the electrodes and the test mass, V = VEH−VTM .
VEH is modeled by n 'patch voltages', each with
its own voltage, Vi. Therefore, the potential dif-
ference between a single patch, and the entire
test mass is Vi − VTM while the total potential
di�erence, V =

∑n
i (Vi−VTM). Substituting this

expression for V into Equation 1, and di�erenti-
ating we obtain the force on one test mass,

F = ±1

2

∣∣∣∣dCdx
∣∣∣∣ n∑

i

(Vi − VTM)2 (2)

Here, absolute value bars are placed around
dC

dx
since its sign depends on the position of the

particular electrode being summed over. The
voltage Vi can be expressed by the applied volt-
age to the electrode, ±V sin(ωt), where again the
sign depends on the electrode being summed over
[6]. Expanding the square in Equation 1 gives,

F = ±1

2

∣∣∣∣dCdx
∣∣∣∣∑

i

(±V sin(ωt))2

+
∑
i

(−VTM)2 − 2
∑
i

±V sin(ωt)VTM

Expanding the �rst term out for all four elec-
trodes gives,

1

2

(
+2

∣∣∣∣dCdx
∣∣∣∣− 2

∣∣∣∣dCdx
∣∣∣∣)∑

i

V 2 sin2(ωt) (3)

which is obviously null, since all terms in the
summation are positive. The same is true for the
second term. Therefore the �nal term in Equa-
tion 3 is the only nonzero term. Expanding this
out over the four electrodes gives,

F = −1

2

(
+2

∣∣∣∣dCdx
∣∣∣∣)∑

i

+2V sin(ωt)VTM

−1

2

(
−2

∣∣∣∣dCdx
∣∣∣∣)∑

1

−2V sin(ωt)VTM

F = −4

∣∣∣∣dCdx
∣∣∣∣V sin(ωt)VTM (4)

This is the force due to charge acting on each
test mass [6]. VTM can be expressed in terms of
the test mass charge as, VTM = q/Ctot. So that
equation 4 becomes,

F = −4

∣∣∣∣dCdx
∣∣∣∣V sin(ωt)

q

Ctot
(5)

Any noise in the charge, δq, or the charging
rate, δ∆q would produce noise in F . A combina-
tion of charge value as close to neutral as possible
and low charging noise would produce the small-
est contribution from this force.

2 The Experiment

In December 2016 a charge measurement exper-
iment was carried out on LISA Path�nder. The
experiment lasted for �ve days: December 13th
- December 18th. The time was split into two
principle investigations: a period of time with no
UV discharging, allowing the test masses to accu-
mulate charge followed by a period of continuous
UV illumination and discharging.

2.1 Purpose

Test mass charging is a signi�cant source of
noise for LPF and in the future, LISA. While
other sources of noise may be minimized by de-
sign before launch, test mass charging is in-
evitable and requires mitigation procedures on-
board. The test masses must be discharged oth-
erwise the noise due to charge related forces
would quickly begin to dominate the signal. The
chosen method of discharge is by UV illumina-
tion, primarily because it is contact-free. The im-
mediate question is whether discharging should
be continuous or periodic. It is expected that the
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continuous discharging scheme would allow for
the test mass charge to constantly remain near
neutral, with the trade-o� of added noise [4].

It is desirable to understand the noise that
a continuous UV discharging scheme would con-
tribute to measurement of ∆g. The charge time
series will exhibit di�erent properties under con-
tinuous discharge as opposed to being allowed
to accumulate charge during measurements. It's
important to understand the properties of this
charging behavior for use in LISA. By observing
the test masses in back-to-back periods of charge
accumulation and continuous discharging, these
questions can be addressed.

2.2 Methodology

Investigation 1: 12/12 09:00 - 12/15 09:00

Vx1,TM1 = .1 sin((2π · .003)t) + .06

Vx1,TM2 = .1 sin((2π · .003)t)

Investigation 2.1: 12/15 09:06 - 12/15 14:00

Vx1,TM1 = .1 sin((2π · .001)t) + .06

Vx1,TM2 = .1 sin((2π · .003)t)
UVlamp1 = 200
UVlamp2 = 100

Investigation 2.2: 12/15 14:11 - 12/18 02:40

Vx1,TM1 = .1 sin((2π · .001)t) + .06

Vx1,TM2 = .1 sin((2π · .003)t)
UVlamp1 = 5
UVlamp2 = 8

Table 1: Applied x1 electrode voltages and cur-
rent of UV lamps

As previously mentioned, the experiment was
carried out in December 2016, lasting a total of
4 days and 14 hours. Investigation 1 lasted for
about 140,400 seconds and Investigation 2 lasted
for the remaining 255,300 seconds. Sinusoidal
voltages were applied to each test mass over the
length of the experiment. To distinguish between
signal from each test mass a di�erent modula-
tion frequency was used for each test mass. TM1
was injected with fmod1 = 1mHz and TM2 with

fmod2 = 3mHz. The applied voltages and the
current of the UV lamps (if in-use) during each
investigation are shown in Table 1. Here, In-
vestigation 2 is split in two segments to clarify
that initially there was a fast discharging period
followed immediately by the slow continuous dis-
charge.

3 Data Analysis

All data from LISA Path�nder was obtained via
the LTPDA Toolbox on Matlab. Analysis was
carried out within this toolbox, for convenience
and reproducibility of results. In the LTPDA
Toolbox data is stored, depending on its type,
as either an analysis object (ao) or a parame-
ter estimation object (pest). These each contain
information about the data they store; most im-
portantly, units, errors, descriptions, names, and
histories.

3.1 Calculation of Di�erential Accelera-
tion

All of the constants needed to perform the cal-
culation of the di�erential acceleration, ∆g, were
obtained directly from LISA Path�nder, through
telemetry. They were stored as analysis objects
inside the LTPDA environment throughout the
entire process of data analysis. The positions of
the test masses, as well as their applied forces
were also obtained from telemetry. A summary
of all data from telemetry is given in Table 2

Symbol Description Units

x1 TM1 position wrt spacecraft m

x12 Di�erential TM position m

F1 Applied force on TM1 kg ·m · s−2

F2 Applied force on TM2 kg ·m · s−2

m TM mass kg

ω2
2 Sti�ness of TM2 s−2

ω2
12 Di�erential TM sti�ness s−2

C1 Calibration factor for F2

τ C1· Time delay s

Table 2: Data and useful constants obtained
from telemetry.
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The force on each test mass is modeled using
Hooke's Law. TM1 is modeled as a spring under
simple harmonic motion, while TM2 includes a
driving or applied force, F2c. The controlled force
on TM2 takes into account calibration of the cir-
cuitry and a time delay F2c = C1Fapplied(t − τ).
Expanding this as a Taylor Series to �rst order,

F2c = C1(Fa(t)− τ
dFa
dt

(t)) (6)

The term
dFa
dt

(t) is calculated using a numeri-

cal 3-point derivative built into the LTPDA Tool-
box, and the constants C1 and τ are obtained
from telemetry.

The equations of motion for TM1 and TM2
respectively are,

F1 ≡ m1ẍ1 = −k1x1 (7)

F2 ≡ m2ẍ2 = −k2x2 + F2c (8)

Dividing through by the masses, and intro-
ducing the constants ω2

1 and ω2
2 Equations 8 and

9 simplify to,

F1

m1

= ẍ1 = −ω2
1x1 (9)

F2

m2

= ẍ2 = −ω2
2x2 + g2c (10)

where the constant, g2c ≡
F2c

m2

, is also intro-

duced. The di�erential acceleration is de�ned as
the di�erence in force per unit mass of the two
test masses,

∆g =
F2

m2

− F1

m1

(11)

∆g = (ẍ2 − ẍ1) + (ω2
2x2 − ω2

1x1)− g2c (12)

For further simpli�cation, the constants o12 ≡
x2 − x1 and ω2

12 ≡ ω2
2 − ω2

1 are introduced. The
�nal form of the di�erential acceleration is given
by,

∆g = ẍ12 + ω2
2x12 + ω2

12x1 − g2c (13)

Veri�cation of the algebra leading to the pre-
vious equation is left to the reader.

3.2 Calculation of Test Mass Charge

In the previous section, ∆g was de�ned as the
di�erence in force per unit mass of the two test
masses. Equation 11 can be simpli�ed by ex-
pressing the mass of each test mass by the single
constant, m. That is,

m∆g = F2 − F1 (14)

Therefore, the amplitude of ∆g is propor-
tional to the amplitude of the forces, giving

m∆g = −4

∣∣∣∣dCdx
∣∣∣∣V VTM (15)

The test mass voltage is expressed in terms of

the charge as, VTM =
q

Ctot
where Ctot is the total

capacitance between the test mass and all elec-
trodes. Finally, we obtain the charge in terms of
∆g,

q(t) =
−m∆gCtot

4
∣∣dC
dx

∣∣V (16)

Because the voltage applied to each test mass
is proportional to sine it is expected that the
∆g and q(t) signals will also be proportional to
sines. ∆g can be decomposed into its in- and
out-of-phase components: ∆gsin(ω1) and ∆gcos(ω1)

due to the voltage applied to TM1, and similarly,
∆gsin(ω2) and ∆gcos(ω2) due to the TM2 applied
voltage. The components of q(t) proportional to
∆gsin(ω1) and ∆gsin(ω2) are real signal, while any
non-zero cosine components are noise in the mea-
surement.

To obtain the charge time series components
from the ∆g data, two parallel methods are
employed: heterodyne demodulation and least-
squares �tting. These are two independent
pipelines which arrive at equivalent charge time
series, providing mutual veri�cation. For supple-
mental information on these methods see Appen-
dices A and B.

First, ∆g was low-passed with cut-o� fre-
quency, fc = 15mHz and the applied voltages
were low-passed with cut-o� frequency, fc =
10mHz. The data was then split so that each
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Figure 2: Top: Time series of ∆g low passed with cuto� frequency, fc = 15mHz. Bottom: ASD of
∆g calculated using 40,000 second Blackman-Harris windows with 50% overlap. Blue: ∆g during
charging investigation. Red: ∆g during initial and continuous UV discharge.

investigation could be analyzed separately. (See
Table 1.

Heterodyne demodulation was calculated us-
ing the stabilitydemod function in LTPDA. Data
was averaged over 1000s windows and the volt-
age applied to electrode x1 was used as the phase
reference. A 10-parameter �t was calculated us-
ing the lscov function in LTPDA. Fitting was
performed with 2000s �tting windows. The win-
dow size was chosen so as to average out high
frequency noise components that linger in a �t
of shorter window lengths. Again the applied
voltage, Vx1 was used as the phase reference. A
discussion comparing the two methods is given
in the following section and in Appendix C.

4 Results

The section begins by discussing the di�erential
acceleration in both time and frequency space.
This is followed by a comparison of the parallel
methods used to calculate the charge time se-
ries. We then present �ndings that character-
ize the di�erences in measurement noise between
the TM charging and continuous discharge inves-
tigations. Finally we present an exponential �t
of the charge time series under continuous UV
discharge along with discussion of the physically
meaningful �t parameters.

4.1 Di�erential Acceleration
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The di�erential acceleration time-series is
shown in Figure 2. Keeping in mind that ∆g
is related to q(t) only by a constant, the gen-
eral behavior of the charge is inferred from this
plot. Charge build-up during the �rst investiga-
tion produces the cone shape seen in the �rst half
of the �gure. The red curve in the second half of
the �gure indicates that the charge initially de-
creases rapidly, corresponding to the time period
in which the UV lamps were switched on to high
power (see Table 1). Then ∆g indicates that the
charge began to slowly build up, crossing through
zero, and �nally settling towards an equilibrium
value.

The power spectral density (PSD) of ∆g
was calculated during each investigation using
the Welch method with 40,000s Blackman-Harris
windows of 50% overlap. A window length of
40,000 seconds produces a PSD data point as
low as .1mHz (see Figure 2). 50% window over-
lap means there is averaging in the PSD calcula-
tion. The error in PSD goes as 1/

√
Nwin; over-

lapping the windows gives a larger number of
windows in the same time interval and thus less
noise and a more accurate result. The particu-
lar method and parameters used for calculating
the PSD were also chosen for consistency with
previous LPF data analyses. Figure 2 shows the

amplitude apectral density (ASD) of ∆g. Peaks
in each curve are clearly visible at 1mHz and
3mHz, the injection frequencies. Roughly 1

f
be-

havior is observed in the tail, below 1mHz.

4.2 Charge Time Series

As previously mentioned, the charge time se-
ries, q(t), was calculated using two independent
pipelines: heterodyne demodulation and least-
squares �tting. The two methods were compared
and their results are plotted for both TM1 and
TM2 in Figure 3. The most signi�cant devi-
ation between the two methods is seen in the
quadrature component of q(t) during the �rst in-
vestigation. Heterodyne demodulation produced
a linear drift in qcos that is not present in the
same quantity when calculated by least-squares
�tting. This drift is not physically meaningful
as qcos represents only the noise in the charge
measurement. It is expected that this is indica-
tive of some systematic error in the demodulation
method. For this reason, all subsequent calcula-
tions presented in the following sections use the
charge time series as obtained from least-squares
�tting. Enlarged plots and further discussion of
these methods are given in Appendix C for the
interested reader.

Figure 3: Left: TM1 Charge. Right: TM2 Charge. Results are presented as obtained from both
heterodyne demodulation of ∆g as well as a least-squares �t of ∆g.
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4.3 Measurement Noise

The PSD of each charge time-series was calcu-
lated, in the same way as S∆g, using 40,000 sec-
ond Blackman-Harris windows.

Figure 4: Top: TM1; Bottom: TM2. Blue: ASD
of q(t) from �rst investigation, during charge ac-
cumulation. Red: ASD of q(t) from second in-
vestigation, during UV discharge.

Sq has a 1/f dependence in the low frequency
band (shown scaled to ASD in Fig. 4). Fits of
Sq to 1/f were calculated using LTPDA's lscov

function and are shown in Figure 5. The �t slopes
are presented in Table 3. The slope of the 1/f
�t is greater during Investigation 2 for both TM1
and TM2. Based on an assumption of Poissonian
noise in each TM, Sq scales with the event rate
λ.

Sq =
2e2λ

(2πf)2
(17)

The larger slopes during the UV discharge in-
vestigation (Figure 5, light blue) for both TM1
and TM2 indicate that the event rate increases
during discharging. This would produce more
noise in the measurement of charge during UV
discharge as opposed to taking the measurement
while charge is accumulating on the test mass.
The event rates were calculated for both of TM1

and TM2 in each investigation using the value of
Sq at f = .1mHz.

Figure 5: 1/f �ts of ASD of q(t). Top: TM1,
Bottom: TM2.

m [(A · s)2] TM1 TM2

No UV 8.42 · 10−32 4.82 · 10−32

UV 1.79 · 10−31 1.69 · 10−31

Table 3: Slopes of Sq �t to 1/f . Sq = m · 1
f
.

λ [s−1] TM1 TM2

No UV 6.33 · 105 3.26 · 106

UV 1.35 · 106 1.14 · 107

λUV

λNoUV
2.12 3.51

Table 4: Event rates for TM1 and TM2 during
each investigation [s−1]. The third row shows the
ration of the event rate during UV illumination
to the event rate without UV illumination.

The measurement noise in ∆g was calcu-
lated from data during which no experiment took
place. This is referred to as a noise-run and took
place at the end of Decemeber, 2016. The noise
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in ∆g during such a period of time is taken as
the lower-limit of measurement noise since it is
present in the detector itself and not due to any
experiment or applied conditions.

The ASD of ∆g from the noise run is shown
in Figure 6. In the mHz frequency range, S

1/2
∆g

is nearly white in frequency at a value of about
3fms−2Hz−1/2. From this, we calculate error
bars on ∆g from the charge measurement exper-
iment.

δ(∆g) =

√
2S

1/2
dg√
T

(18)

where T = 2 1
fmod

.

Figure 6: ASD of ∆g calculated from noise-run:
2016-12-30 00:00 - 2016-12-31 00:00 UTC.

Recalling that ∆g is simply related to q(t) by
the conversion factor,

dg

dq
=

4
∣∣dC
dx

∣∣Vmod
mCtot

we calculate error bars on qTM1 and qTM2 as,

δqTM1 =
δ(∆g1)

|dg/dq|

δqTM2 =
δ(∆g2)

|dg/dq|

where δqTM1 and δqTM2 di�er only in the
value of fmod. These errors are presented in Table
5.

TM1 TM2

δg [ms−2] 9.42 · 10−17 1.63 · 10−16

δq[C] 5.33 · 10−17 9.24 · 10−17

Table 5: Calculated errors in the di�erential ac-
celeration and charge measurements of TM1 and
TM2 with fmod1 = 1mHz, fmod2 = 3mHz

To compare the noise in the charge measure-
ment between the two investigations the charge
values with the previously calculated error bars
were linearly detrended. Since q(t) during the
UV discharging investigation is exponential in
nature, we �rst split the time series to consider
only the last 50,000 seconds where q(t) is approx-
imately linear. For consistency, q(t) during the
�rst investigation is also split to an interval of
50,000 seconds before detrending. The results of
this analysis are shown in Figure 7. Here the ex-
cess scatter of charge data corresponding to the
UV discharging investigation is visible, indicat-
ing, as expected, more noise in this measurement.

Figure 7: Detrended q(t). Blue: TM1 charge;
Red: TM2 charge; Upward triangles: charging
investigation (no UV illumination); Downward
triangles: continuous UV discharge investigation.

4.4 Exponential Fit

The charge-time series during the continuous dis-
charge period of the second investiagtion were �t
to a two-term exponential curve of the following
form.

q(t) = aebt + cedt

The �t parameter d was set to 0 so that c rep-
resents the equilibrium charge value. We de�ne,
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qeq = c

The charging time constant, τ is given by,

τ =
−1

b

We also rename the �rst parameter, a = ∆q.

TM1 TM2

∆q [A · s] −4.523 · 10−10 −3.041 · 10−11

τ [s] 3.33 · 104 5.00 · 104

qeq [A · s] 1.065 · 10−13 1.682 · 10−13

Table 6: Exponential properties of TM charging
under continuous UV illumination. Exponential
�ts take the form: q(t) = ∆qe−t/τ + qeq.

Figure 8: Exponential �t of the form q(t) =
aebt + c for TM1 charge (top), TM2 charge (bot-
tom). Fits are calculated to 95% certainty using
Matlab's built-in �t function.

5 Discussion

The results determine that, as expected, the con-
tinuous method of discharging test masses on-
board LPF is inherently noisier than allowing

the test masses to accumulate charge during sci-
ence measurements. Although the net amount of
charge on the test mass remains near neutral at
the equilibrium value, there is signi�cantly more
movement of charge at all times. In addition to
the movement of charge due to incident cosmic
rays and solar particles UV discharging produces
a current of charges moving between the elec-
trode housing and the test mass. Re�ection of
the incident UV light within the electrode hous-
ing produces secondary currents in the opposite
direction as the main discharging current. This is
the source of the extra noise in the UV discharg-
ing method. There is a trade-o� between the two
methods. Continuous discharging allows the test
masses to remain at a constant value near neutral
although producing more noise in the measure-
ment. This excess noise is indicated in the large
amount of scatter in the detrended q(t) plots.

Figures 2 and 3 show that the charge quickly
decreases under the initial high-power UV light
illumination. Under continuous UV illumination,
the charge on the test mass will have an expo-
nential nature in time. As the photoelectric ef-
fect from the UV light counteracts environmen-
tal charging the test mass charge trends toward
an equilibrium. The value of qeq di�ers between
the two test masses; both values are reported in
Table 5. The time constant τ determines how
quickly the test mass reaches its qeq. If some un-
expected environmental factor perturbs the sys-
tem, depositing an abnormal amount of charge
on the test mass the time constant determines
how long the test mass will take to return to
equilibrium.

Under normal conditions, once the test mass
reaches qeq, the charge value stays nominally con-
stant in time. This di�ers from the original
scheme, in which the test mass charge builds
up linearly in time, throughout science measure-
ments. A constant charge value may be easier to
model and account for in the LISA budget than
a time-varying one.

10



6 Conclusion

LISA will be a ground-breaking experiment, de-
tecting gravitational waves from a space-based
observatory for the �rst time. The sensitivity re-
quired by LISA is such that we must be able to
characterize every noise source in the detection
band prior to LISA's launch. Test mass charging
produces signi�cant noise in the mHz frequency
band. The expeccted method for mitigating the
charge-induced force noise in LISA is by con-
tinuous low-power UV light illumination. The
results presented here add a noise characteriza-
tion and charge time-series model to the current
understanding of the continuous UV discharging
method.

7 Supplemental Information

Appendix A: Principles of Heterodyne
Demodulation

Heterodyne Demodulation is a principle of
signal analysis with widespread uses although be-
ing founded on fairly simple mathematical the-
ory. It is used to decompose a waveform into an
'in-phase' and 'out-of-phase' component, which
in real applications translate to signal and noise
components. We start with any signal, which for
convenience we will say is a simple sinusoid.

x(t) = A sin(w0t) (19)

Now, we can multiply our signal by both a
sine and cosine.

xsin(t) = x(t) · 2 sin(wt) (20)

xcos(t) = x(t) · 2 cos(wt) (21)

Here, the factor of 2 is introduced for con-
venience which will become clear presently. We
can now take a closer look at our sine and co-
sine components using a few simple trigonomet-
ric identities.

xsin(t) = A · [cos[(w0 − w)t]− cos[(w0 + w)t

2
] · 2

= A[cos[(w0 − w)t]− cos[(w0 + w)t] (22)

And similarly for the cosine component, we
obtain,

xcos(t) = A[sin[(w0 +w)t] + sin[(w0−w)t]] (23)

Now, if the angular frequency, w0, of the sig-
nal is known we can pick w = w0 so that the
above expressions for xsin and xcos become,

xsin(t) = A(1− cos(2w0t)) (24)

xcos(t) = A sin(2w0t) (25)

Assuming the signal is a real signal and ex-
ists over some long time interval, we can consider
what happens to xsin(t) and xcos(t) over time. In
other words, we take the time average of xsin(t)
and xcos(t) over multiple periods, T of the signal.

〈xsin(t)〉 = 1
T

∫ nT
0

A(1− cos(2w0t)dt

= A

〈xcos(t)〉 = 1
T

∫ nt
0
A sin(2w0t)dt

= 0

Therefore, over time the in-phase component,
xsin(t) recovers the amplitude of our signal and
the out-of-phase component, xcos(t) drops out to
0.

Appendix B: Principles of Least-Squares
Fitting

As was previously shown, the di�erential ac-
celeration, ∆g of the two test masses is re-
lated the the voltage applied on either test mass,
as well as the charge, q(t) present on the test
masses. Therefore, ∆g can be expressed as the
sum of the contributions from an initial charge
present on the test masses, the voltage applied
to TM1, and the voltage applied to TM2. That
is,

∆g = (∆gq0) + (∆gVTM1
) + (∆gVTM2

)

11



More precisely, ∆g is expressed as the sum
of three base functions each with an unknown
amplitude.

∆g = ∆g0 + [∆gs1 sin(w1t) + ∆gc1 cos(w1t)]

+ [∆gs2 sin(w2t) + ∆gc2 cos(w2t)]

Here, the sine and cosine terms come from
the sinusoidal voltages applied to the test masses.
This approximation can be made more accurate
by expanding the terms as a Taylor polynomial
to �rst order.

∆g =

[
∆g0 +

d∆g0

dt
t

]
+

(∆gs1 +
d∆gs1
dt

) sin(w1t)+

(∆gc1 +
d∆gc1
dt

) cos(w1t)+

(∆gs2 +
d∆gs2
dt

) sin(w2t)+

(∆gc2 +
d∆gc2
dt

) cos(w2t)

Now, we have that ∆g depends on ten inde-
pendent base functions, each with an unknown
amplitude. For brevity, we will henceforth de-
note each base function as χi and its correspond-
ing amplitude by ai,for i = 1 : n. Note that in
this particular case, n = 10.

Let Xj =
(
χ1 χ2 · · · χn

)
and A =(

a1 a2 · · · an
)
. ∆g is not a continuous func-

tion, rather it is made up of a �nite number, m,
of data points. Therefore, we de�ne m functions,
f(Xj) = Xj · A so that ∆g can be de�ned as,

∆gj = f(Xj) + η (26)

where η is an error in the approximation.
This expression is expanded out for all of the m
data points giving,

∆g1

∆g2
...

∆gm

 =


X1

X2
...
Xm



a1

a2
...
an

 (27)


∆g1

∆g2
...

∆gm

 =


χ1,1 · · · χ1,n

χ2,1 · · · χ2,n
...

. . .
...

χm,1 · · · χm,n



a1

a2
...
an

 (28)


∆g1

∆g2
...

∆gm

 =


a1χ1,1 + · · ·+ anχ1,n

a1χ2,1 + · · ·+ anχ2,n
...

a1χm,1 + · · · anχm,n

 (29)

The vector A can take on an in�nite number
of values. For a given m the method of least-
squares �tting picks out the particular values of
the ai that minimize the error in ∆g. We will call
this vector A . That is, when A = A we have
that,

n∑
i=1

(∆gj − f(Xj))
2 = min. (30)

[∆gj − (a1χj,1 + · · ·+ anχj,n)]2 = min. (31)

∆g is �t over a number of intervals of some
given length, each with m data points. For each
interval, we obtain Aj for j = 1 : m. These
m vectors are averaged to obtain a single A for
each interval of the �t. It is obvious then that
the shorter the interval, the better the �t that
can be obtained.
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Appendix C: Charge Calculation Method Comparison

Figure 9: Enlarged plots of test mass charge time-series. Top: TM1, Bottom: TM2.
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Figure 10: Charge measurement obtained from �ts averaged over 1000 and 2000s windows. Top:
TM1. Bottom: TM2. We note that for TM1 there is signi�cant high-frequency noise in the 1000s
�t. This noise averages out in the �t when using 2000s windows.
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Figure 11: Comparison of charge measurement obtained from �t to charge measurement obtained
from heterodyne demodulation. Top: TM1, Bottom: TM2. The �t was averaged over 2000s win-
dows. We note the linear drift in the quadrature component of the charge from demodulation during
Investigation 1. This is expected to be due to some unknown systematic error in the demodulation
technique.
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