Wavelet graphs for the direct detection of Gravitational Waves

Samantha Goldwasser™

AstroParticule et Cosmologie, Universite Paris Diderot

(Dated: August 1, 2017)

The research in this paper focuses solely on data analysis techniques. It is part of the development

of a data analysis tool know as ”Wavegraph” which is part of a larger analysis scheme known as

the Coherent WaveBurst (cWB). This new time-frequency search method is an alternative to the

matched filtering techniques that are usually employed in the detection of gravitational wave signals.

1. INTRODUCTION

Before discussing the specifics of the wavelet graphs
there will be a small introduction which includes: general
relativity, data analysis techniques used for the detection
of gravitational waves (including the matched filtering
technique as well as the cWB) and why these types of
data analysis are different from other kinds of astronom-

ical data analysis.

Foreword on general relativity and gravitational waves

In 1915 Albert Einstein published his theory of gen-
eral relativity, which drastically changed our concept of
7space” and consequently of ”time”. This theory relies
in the geometry of space-time to explain what we per-
ceive as 7gravity”. A corollary to this theory is that if
a massive object spins in a way that is not spherically
symmetrical then gravitational radiation will be emitted
in the form of ripples; these ripples distort the space-time
they travel through. By using laser interferometry we are
able to detect these ripples, which we refer to as ”grav-
itational waves”. Ground-based interferometers such as
LIGO (the Laser Interferometer Gravitational wave Ob-
servatory) and Virgo have been able to detect this kind

of gravitational radiation.

Overview of Gravitational Wave Data analysis

*Electronic address: sgoldwasser93@ufl.edu

In order to talk about gravitational wave data analysis
we ought to consider the fact that this type of analysis
is quite different from other kinds of conventional astro-
nomical data analysis. Most astronomical observations
occur through the lens of electromagnetic radiation,
and so because of this most of the data we have from
studying the universe can be found somewhere in the
electromagnetic spectrum. With gravitational wave
astronomy this is absolutely not the case. Because of the
kind of instrument we use to detect the waves (Michelson
interferometer) there are certain limitations we have
to work around, among them the following: gravita-
tional wave antennas are essentially omni-directional
(with a response better than 50% of the RMS over
75% of the sky)[l] because of this, our data analysis
systems will have to perform all-sky searches for sources
when constrained to individual detectors (although
it is theoretically possible to do directional search by
triangulation when using three detectors). Additionally,
interferometers cover three orders of magnitude in
frequency (from 10 Hz to a few kHz) and so searches
have to be carried out over this range of frequencies as
well. Polarization measurements can only be achieved
with a multiple detector network, and so algorithms that
work with data from several interferometers have to be
developed. A couple more limiting factors are the severe
demand on both our theoretical understanding of the
known waveforms and our data analysis pipeline, and
finally the tremendous amount of data we are analyzing

(a few kilobytes per second for as long as the instrument

mailto:sgoldwasser93@ufl.edu

is running)[1].

Analyses of LIGO and Virgo data are carried out by
collaborating groups who focus on four distinct source
types: compact binary coalescences, un-modeled bursts,
continuous waves, and stochastic background[1]. How-
ever, these categories represent archetypical extremes
and many sources fall between these extremes; these
sources can be analyzed with complementary methods
that arise from the techniques developed for the four
main chategories. Figure 1 [1] shows a way in which
LIGO and Virgo searches can be broken down. As one
moves from left to right waveforms increase in duration,
while as one moves from top to bottom our previous def-
inition of what the waveform should be decreases. The
research that will be discussed in this paper focuses on
long bursts, which is not explicitly in this diagram, how-
ever, it can be classified as a category in between bursts

(lower left corner) and continuous waves (upper right cor-

ner).
x Z 2 =
Short-Lived <€ > Long-Lived
Known
waveform Binary Inspirals Continuous waves
(NS-NS) {lsolated spinning NS)
Spinning BH-BH Accreting NS
merger
Bursts Stochastic background
(Supernovae) (Cosmaological)
Unknown
waveform

FIG. 1: Gravitational waveform categories which affect search

strategies

Long bursts are expected to be emitted by compact
astrophysical sources with hydrodynamic instabilities.
Some of the examples of this category include: fallback

accretion onto a new neutron star, non-axisymmetric ac-

cretion disc instabilities, and finally non-axisymmetric
deformations in magnetars can also lead to generating
this kind of signal [5]. The wavelet graphs have been
proven successful in analyzing data coming from coalesc-
ing binaries of neutron star and/or blackholes [3](from
the two detector LIGO network) and so this is our moti-

vation for presently investigating the upper right corner

of the aforementioned diagram.
The Matched Filtering Technique

Matched Filtering is a data analysis technique that ef-
ficiently searches for signals of known shape buried in
noise. This technique consists in correlating the output
of a detector with a waveform known as a filter[4]. Given
a specific signal the task is to find the optimal template
that would produce on average the best signal to noise
ratio possible.

Most gravitational wave searches include the matched
filtering technique in one way or another. The match-
ing filtering technique is optimal [4], however, this ap-
proach requires the construction of large template banks
using precise theoretical models (For example in the case
of compact binary mergers the size of a template bank
can be in the order of 10° templates). Even though
progress has been made in constructing these template
libraries and there are good approximations of the com-
plete merger waveforms these are not from a single model.
These waveforms are built from gluing several models to-
gether, and so we do not have complete waveforms for the
full parameter space, we know there are cases where the
waveform model is not accurate (i.e high spins and high
mass ratio, or binaries in eccentric orbits), this is the

motivation for using an alternative technique.

2. COHERENT WAVEBURST (CWB)

In addition to template-based searches there is another
class of search that has been carried out for gravitational

waves from un-modeled sources, this type of method is

independent of the large template banks [3]. This type of
detection is based on excess signal power and correlation
of signals found in different gravitational wave detectors.
This is useful in the regions of the parameter space which
have no descriptive waveforms to use as templates.

This kind of un-modeled search is expected to be less
effective than the optimal matched filters but it encom-
passes a wider class of sources that may be missed by the
template searches[2]. The Coherent Waveburst is one of
the leading data analysis pipelines used for the detection
of un-modeled transient gravitational wave events. Co-
herent WaveBurts was used to detect gravitational waves
for the first time in history (GW150914). The Waveg-
raph project exists in order to improve the accuracy of
the cWB pipeline [3]; because of this I will elaborate on
how the cWB identifies event candidates and on the se-

lection criteria for these events.

Coherent WaveBurst searches for short duration bursts
of gravitational waves using information from all detec-
tors in a network simultaneously. It operates in the fre-
quency range of 24 Hz to 2048 Hz [5]. This method
is performed using time-frequency decomposition. This
decomposition transforms a sampled time series into a
time-frequency map, the values of pixels in the map rep-
resent the energy amplitude at that time-frequency loca-
tion [2]. Since each detector has its own time-frequency
map, time-frequency maps from all detectors are com-
bined into a single map coherently by applying a time
delay with respect to the travel time of the gravitational

wave.

Coherent WaveBurst identifies event candidates as re-
gions on the time-frequency plane which have excess
power [2]. A clustering procedure is employed in order
to identify the same time-frequency event across multi-
ple decomposition resolutions. Once all of the clusters
are identified, then detection statistics are calculated for
each event candidate.

In order to identify possible event candidates Coherent

WaveBurst uses a likelihood ratio (equation 1)[2]. This is

the ratio of the joint probability of a gravitational wave
signal being present in the data to the joint probability

of no signal.

N K 2 9
3. e
L(hy,hy) = H exp(a—gj _ (k= exj(hy, b)))
k kj

J ' %%
(1)

Here xj; is the sample output strain (or total energy
in the detector), o, is the noise variance and €;;, is the
detector response.

The likelihood functional is summed over each of the
K detectors in the network and time-frequency regions
composed of N samples. The likelihood functional is an-
alytically maximized to determine estimators for hy and
hy amplitudes [2] (the two amplitudes of the polariza-
tions of the gravitational wave). The process involves
maximizing a significant number of parameters simulta-
neously and it may allow for unphysical solutions. In
order to lessen this problem constrains are applied to the

likelihood functional [2].

Selection criteria for events

Because data collected by gravitational wave detectors
is infested with noise there are four sets of statistics which
are used for selection of true events: First, a network
correlation coefficient cc which tests the overall consis-
tency of the event candidate based on the comparison of
the reconstructed correlated signal energy (E.) and the
residual noise energy (E,,) [2]

E.

“TE.+E

(2)

This network correlation coefficient varies between 0 and
1, where true gravitational wave events should have a cc
near 1.

The second criterion we use is a penalty factor, which
is a measure of consistency of reconstructed detector re-

sponses, and it is described by

The quantities < x% > and < ei > are the summed
data sample amplitudes and reconstructed detector re-
sponses for a selected time-frequency region in an indi-
vidual detector k. True gravitational wave events should
have a Py near 1 [2].

The next criterion is the energy disbalance, which is
similar to Py. It is characterized by the mismatch be-
tween the reconstructed energy of the event and the en-

ergy of the data. It is described by the following.

K
| < zpep > — < é€r > |

_ k=0

True gravitational wave events should have A values
near 0 [2].

Lastly, the coherent network amplitude is the main
detection statistic used to rank events, the following is
described by the equation below. This statistic (along
with cc) is the main tool used to reject various types of

glitches [2].

FE.cc
< 5)

’]7:

Here K is the total number of detectors.
The following is a table with the values of selection

criteria for each of the aforementioned statistics [2].

TABLE I: Values for selection criteria

Statistic Threshold
Network Correlation cc >0.6
Penalty factor Py >0.6
Energy disbalance A <0.35
Coherent Network Amplitude n >3.0

It is important to point out that the energy disbalance
and the penalty factor p; are not as important anymore,
the main detection statistics used in the preset are the
network correlation coefficient cc and the coherent net-

work amplitude 7

3. WAVELET GRAPHS

Compact Binary Coalescences

In few words the cWB extracts clusters of significant
coeflicients from time-frequency decompositions which
result from the coherent combination of data from mul-
tiple gravitational wave detectors[3]. I will now elab-
orate on how these time-frequency representations are
computed.

A wavelet graph is a graph that combines the paths
from a family of chirp signals that cover a region of the
parameter space. In order to obtain said graph one first
determines the chirp path (or time-frequency-scale curve)
that collects the large wavelet coefficients associated to
a given chirp signal [3]. Figure 2 is an example of a
wavegraph with 1009 nodes for a system of coalescing

binaries in the mass range of 2.5-10 solar masses.
Generating the graph

The wavelet graphs are generated using a software
called ”Wavegraph”. This software determines which
wavelet in the Wilson basis has the maximum coupling
with the chirp we are interested in [3]. This algorithm
works in the continuous time, frequency and scale limit.
The wavelet at time tg, frequency fo and scale ag is ex-

pressed as:

wo(f) = g(f — fo; a0)exp(—2mifto) (6)

Where the function g() represents the envelope. The
scale parameter is approximated by ag = fso¢ where f;
is the sampling frequency. The time frequency map that

we are interested in is defined by the following:

2| fealh)st)
N

Where N(f) is the noise power spectrum. What we

pg = plto, fo. ao) df|? (7)

are looking for is the time ¢y and the scale ag which will

maximize pgy for a given fy

Wavegraph (1009 nodes)

o

10

-
I EE
[
-]
2 g
a
= 4
10 3
-2 0 2 4 6 8 10
time (s)
ltilJ g
s 0°
e ? kg
T s [3
2 °
£ 10 I
= 48
] £
E 32
2
10* 1

-2 0 2 4 & 8
time (s)

=t
a

FIG. 2: Example of wavegraph, The top image shows the
distribution of selected pixel nodes in the time, frequency,
scale space. The bottom image shows the number of nodes

per ancestor

Since chirps can always be expressed in the form of
a complex exponential s(f) = A(f)exp(iyy(f)) in the
Fourier domain, we can write equation seven as an oscil-
latory integral and then evaluate it using the stationary

phase approximation, and so we obtain:

2 2 JslA(fo)P?
= t s s = — 8
Po p(0 fO ao) \/EN(fo)QClo ()
This is what the time-frequency-scale map p looks like.
Chirp paths are computed this way and then combined
into the wavelet graph that collects the selected pixels

and their connection with the previous pixel in the path

(the ancestors).

After the wavegraph is generated the output is a list of
nodes, each node has eight characteristics which include:
the node ID, a time, frequency and scale indices, an aver-
age value, a stardard deviation value, a list of ancestors
associated with that node. Each node also has a position
in the time-frequency-scale plane. We did not have any
tools for the visualization of the connections between the
nodes of the wavegraph. Having said tool is necessary in
order to understand and diagnose the graph, and so my
project focuses on generating a visual representation of

these wavelet graphs.
Data visualization algorithm for wavelet graphs

The algorithm for the visualization of wavegraphs that
I have written (Figures 7,8,9,10) takes each node and it
assigns them a position depending on their time and fre-
quency location, afterwards it assigns the node a color
depending on the scale used (this is a representation of
the third dimension) and a size depending on the num-
ber of connections associated with said node. Then each
node is connected to its ancestors with a black line. If
one is interested in a specific scale the code can be easily
modified (Figure 10 lines 179-184) to show, in red, the
nodes associated with that scale, their respective ances-
tors and each of their connections. This feature exists in
order to help visualization since it is certainly easier to
focus on a specific scale (scale) at a time in order to un-
derstand the behavior of the graph. Testing my code on
previously tested data from simulations is a good way to
get a feel for if the code is working properly or not. This
is why the first example of my wavegraph visualization
uses data from coalescing binaries (upper left corner of
diagram in Flgure 1) even though this paper focuses on
long bursts.
Figures 3 and 4 show a Wavegraph of 533 nodes com-
puted using 2950 Binaries; in the first figure we see every
scale and every connection with all 533 nodes, and in

the second figure we select a specific scale to only show

the nodes associated with that scale and their ancestors.
One modification that could be done to the code in the
future would be for ancestors and nodes to have different

colors in order to be able to identify them easily.

Long bursts from compact astrophysical sources with
hydrodynamic instabilities are expected to decrease in
frequency approximately linearly in time, these unmod-
eled transient events are expected to have durations be-
tween 10 and 500 seconds [5]. I wrote a short code (Fig 6)
that generates an arbitrary chirp signal whose frequency
increases linearly in time by entering four user inputs:
the initial and final frequencies, the sampling frequency
and the total time of the chirp. Using this code I gener-
ated a waveform that increases in frequency going from

100 Hz to 200 Hz.

Wavegraph

7.0

40

time (s)

FIG. 5: Wavegraph created from one single chirp of frequency

which increases linearly in time

Afterwards I ran this chirp through wavegraph to gen-
erate the time-frequency-scale graph and finally I plotted
all the nodes by using the wavegraph visualization code
I wrote. The result is shown in figures 5 and 6, where
figure 5 is the graph for all the scales (4 through 7) and
figure 6 is the same but limiting the code to a window
of a=7 . The graph grows linearly with time, as we we

would expect intuitively.

Wavegraph

230 .

229
228 \
227 X
226 nY
225

224
223
222
221
220
219
218
217
216

215
214
213
212
211
210

2.09 “
208

207 I\

206

205

208 |
203

202 |
200

200

00 09 18 27 36 45 54 63 72 81 90 99 10.8 1L7
time (s)

log(frequency(Hz))

FIG. 6: Wavegraph created from one single chirp of frequency

which increases linearly in time

Once I generated figure 5 and was sure my wavelet
graph visualization scheme was working properly I ran
some time-strain data (which is chirping downward), pro-
vided by my advisor, through wavegraph. After the
graph was generated I ran the file through my visual-

ization code.

Wavegraph for f0=209 Hz ff=110 Hz (a=7)

3
time (5)

FIG. 7: Wavegraph from time-strain data, chirping downward
from 209 to 110 Hz

Surprisingly the resulting graph did not follow the cor-
rect chirp path, and so I generated a chirp down signal by
using my generic waveform generator (figure 7) in order

to emulate an analogous signal to the time-strain chirp.

I used the same parameters (initial,final and sampling
frequency and total chirp path) fo = 110 Hz, fenq = 209
Hz, fs = 1024 Hz and ¢ty = 9 seconds as the time-strain
data has.

The time-strain data plotted using the visualization
code resulted in Figure 7, and the emulated signal using
the same parameters resulted in Figure 8. Comparing
figures 5 and 6 with figures 7 and 8 it is apparent that
the graph is not as smooth, and if one looks at the node
numbers and the chirp path taken between these nodes
one can see that the graph actually goes back in time
(and sometimes forward and then back in time) which is

borderline nonesensical.

Wavegraph for strain-time data (a=7)

2.3492
2.3392
2.3292
23192
2.3092
2.2992
2.2892
22792
2.2692
2.2592
2.2492
2.2392
2.2292
2.2192
2.2092
2.1992
2.1892
2.1792
2.1692
2.1592
2.1492
21392
2.1292
2.1192
2.1092
2.0992
2.0892
2.0792
2.0692
2.0592
2.0492

log(frequency(Hz)

FIG. 8: Wavegraph from generic waveform generator, chirp-

ing downward from 209 to 110 Hz

My code shows evidence that the sorting procedure for
finding connections between nodes does not work for long
bursts of decreasing frequency, it exclusively works with
coalescing binary systems (since they chirp upward) and
with systems that increase linearly in frequency (such as
the ones I generated using the generic graph code). The
issue became more obvious when I generated a graph
from a generic waveform chirping downward from 173 to

119 Hz (Figure 7), the chirp path taken goes back and

forward in time and it is rough in contrast to the smooth
chirp path of the graphs increasing linearly in frequency.
The need for a new sorting scheme in order to connect the
nodes properly is evident, and so the next step for the
visualization of wavegraphs should focus on diagnosing
the problem of why the scheme seems to fail with data

that decreases in frequency with time.

Wavegraph for f0=173 Hz ff=119 Hz (a=7)

22134

2.2034

2.1934

2.1834

2.1734

2.1634

2.1534

logfrequency(Hz)

2.1434

21334

21234

21134

2.1034

2.0934

0 10 20 30 40 50 60 70 8 9 100 110 120 130 140
time (s)

FIG. 9: Wavegraph generated from generic waveform chirping

downward from 173 to 119 Hz

[1] K.Riles, Gravitational Waves:

2

3

4

4. BIBLIOGRAPHY

Sources, Detectors and
Searches, Physics Department, University of Michigan,
2013.

Classical and Quantum Gravity, Volume 26, Number
20, A burst search for gravitational waves from binary
black holes, C Pankow, S Klimenko, G Mitselmakher, I
Yakushin, G Vedovato, M Drago, R.A Mercer, P Ajith
2009 IOP Publishing Ltd.
Eric Chassande-Motin,
Even Chase, Archana Pai, Gayathri V, Gabriele Ve-

Eric Lebigot, Hugo Magaldi,
dovato Wawvelet graphs for the direct detection of gravi-
tational waves, APC, Univ Paris Diderot, CNRS/IN2P3,
CEA/irfu, Obs. de Paris, Sorbonne Paris Cite, France.
Tsinghua University, Beijing, China. IISERTVM, Com-
puter Science Building, CET Campus Trivandrum Kar-
ala, India. INFN, Seziono di Padova, Padova, Italia
ecm@apm.univ-paris7.fr

Living reviews in relativity Physics, Astrophysics and Cos-

mology with Gravitational Waves, B.S. Sathyaprakash,

Bernard F. Schutz, 2009.

5. ACKNOWLEDGEMENTS

I would like thank the University of Florida and the
National Science foundation for giving me the opportu-
nity to partake in this program and expand, so heavily,
my knowledge of Python and data analysis techniques;
since these are priceless abilities. I'd like to thank every-
one involved in the organization of the IREU program, in-
cluding Bernard Whiting, Guido Muller, Michaela Pick-
enpack, Kristin Nichola and Andrew Miller. T would like
to give special recognition to the people who helped me at
the APC, among them Eric Chassande-Mottin, Philippe
Bacon and Gayathri Vivekanandhan, not only for teach-
ing me about Python and about the wavegraph project

but also for making my stay in Paris truly unforgettable.

Wavegraph for all windows

2.701

2.601

2.501

2.401

2.301

2.201

log(frequency(Hz))
N N
o =3
o o
P~ ~

=
©
o
P4

1.801

1.701

1.601

1.501

1.401

1.301

0.0 0.2 0.4 0.6 0.8 1.0 12 14
time (s)

FIG. 3: Example of wavegraph for coalescing binaries. Com-
puted using 2950 binaries, the graph has 533 nodes, in this
graph we see nodes of every scale with different colors, the

bigger the scale the lighter the color

1.6

2.0

Wavegraph for window of a=7

2.701

2.601

2.501

2.401

2.301

2.201

log(frequency(Hz))
N I
o =3
o o
P~ ~

=
©
o
=

1.801

1701

1.601

1.501

1.401

1.301

0.0 0.2 0.4 0.6 0.8 1.0 12 14 1.6 18 2.0 22
time (s)

FIG. 4: Example of wavegraph for coalescing binaries focusing
on a specific scale of size 7. Computed using 2950 binaries,
the graph has 533 nodes total, in red we see the nodes of scale

7 and their ancestors

10

s fE ed WA P b e

dWgveform generator with time dependent freguency ond f_fFinal parameter

import numgy as np
import pylab
import matplotlib.pyplot as plt

#Define omega as a function of frequency
def fregt{t,f 8):

freqt=a*t+f_@

return fregt
def omegatit,f_@):

onegat = 2*np.pl*frequ(t,.f_@a)

Feturn omegat

#Parameters (user inputs)
fe=182d § SomplesssSecond
f_ 8= 188 & Mz

f_final=28& #Hz

tfimal=18 & Seconds

ATotal number of somples
N=fs*tfinal

#Rate of change
a={f_final-f_@8)/tFinal

ﬂﬂ&f[rﬁlﬁ' time g g discrete variable
t=np.linspace(8,tFinal N}
Freqtine=freqt(t,#_8)

dDefine fregquency and Cime. Make sure Fs:2f is satisfied at every point

f_new=[]
t_new=[]
for 1 in range (8,len(freqtime)}):
if fs »= I*fregtime[i]:
t_new.append (E[L]}
f_new. append(freqtime[L])
else:

print “Cannot sample signal with s ¢ 2"

y=np.cos(np.pl*a®*ng.array (t_nes)*ng.array(t_new)+2%np.pi*f_@*np_array(t_new))

#Te plot and Show
plt.plot{t_mew,y, B)
plt.axis([&, 18, -1.1,1.1]}
plt.xlabeli ' time"}
plt.ylabel(' amplitude”)
Hplt.stem(t, ¥, 'm";)
plt.shos(}

FIG. 10: Generic Waveform Generator

11

#Node Graph

X matplotlib En)ine

import networks as nx

import matplotlib,pyplot as plt
import numpy as np

import math

import matplotlib.colorbar as char

iTmport text file
text_file = open{ wavegraphsvenl.bxt™, “r"}
lines = text_file.resdlines()

PELiminate the Limes that start out with X or &4
lines = [1 for § in lines &F §[1) 1= "¥° and Q[@] 1= '%")

#Fivide the List inte a List of ~ode chorecleristics and freg-time-window

[T = P e e e b s e
EE R e e R E E N E R v v v bow e

L¥] LN}
w1 ik

BEEYE

oldcharacterlstics = Lines[::2]
oldfregiime = lines[1::2)

PNode characTeristics

characteristicis|)

for x in oldcharacteristics:
asnap (¥loat, =.eplit(" "))
characteristics. sppend(a)

Fhode IDs
nodelDs=(|
foar 1 in characterlatlcs:
nodeID =i[@]
nodelDs . append{nodelD)
nodelDs=[int{i) for i in nodelDs

BAncestors
nodel0s_anca| |
far 1 in characterlistices:
if len{i) » T:
nodelDanc=1]&)
nodeTDs_anc . append{nodeTDanc)

fFar the Freg-time-window Lines

freqlinme=| |

for 1 in oldfregiime:
newelementis Losplit(® ")
Fregline. append | newe Lessnts)

EFrequenc (g5

frequenciess| |

for 1 in freqlime:
eschfreguency=float(1[2])
Frequenc Lles _ sppend(eachfreguency)

FIG. 11: Wavegraph visualization 1/4

= Bh A b

[I P T R I R I P Ry

7]

[4~]

hoBh B Bh LA
Ll Pt = [1=]

e R R L I e e e N I O - =T =T = -
[T I R, R CSp U OIS - BT - N - R [£

88

lagfrequencies=[]

far i in frequenciss:
everylog=math.log(i, 18]
logfrequencies append(everylog)

ATimes

times=]]

for i in freqtime:
eachtime=float{i[6])
times.append{eachtine)

#Te make an arrdy for each window to have ¢ color (Hove all nodes colored)
MWfindows
dimensions=[]
for 1 in freqtime:
eachdimension=Ffloat(i[18])
dimensions . append(eachdinension)
dimensionsarray=ng.array{dimensions)

newtimes= tuple(times)
newfreguency =tupleflogfrequencies)
coordinates = zip{newtinmes,newfrequency

4 dic fil‘.'h"n'.'l‘.l"‘}' with nodelIDs and coordinates as pﬂSE! Lons
dic=dict(zip{nodelDs,coordinates})

#cetting o List of the node IDs repeated g5 many times s there gre dncestors per node
repeated_nodeIDs=[]

for 1 in characteristics:
if lem(i) > 7:
a=len(Li}-7
regeated_nodeIDs=np. concatenate] (repeated nodeIls np.onss{a]*L[a]))
repeated_nodeIDs = [Ent(i) for L in repeated_nodelDs]

Moetting o LiSt of aoll the ancestors

ancestors=[]

L=len(characteristics)

for 1 im range (8,L):
l=len{characteristics[i])
b=characteristics[L][7:1]
ancestors. append(b)

list_of_ancestors
list_of_ancestors

[Etem for sublist in ancestors for item im sublist]
[Ent{i) for 1 in Llist of ancestors)

#Far the celors of the nodes of g specific window

Maet the posifions of all the indices for the window I aw inferested in
calarlist=[]

indxi=[]

FIG. 12: Wavegraph visualization 2/4

13

[~ QT - -)
[L - R R]

Ty
58

[i=]

111
112
113
114
115
116
117
118
119
128
111
122
123
124
135
126
137
128
139
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
145
147
148
143
158

Mlser enters the window she's interested in, indxl is the node ID which has that value for the window
userinp = 7

for i, in enumerate(dinensions):
if j == userinp:
Indxl. append (L)

Acetting the values for the node IDs associofted with those positions (This is the same as the imdxl but in int)
nodeIDEind=] |
for i in indxl:

each = nodeIbs|i]

nodeIDind . append [each)

indx2=[]
for i,j in enunerate]repeated_nodelDs):
for u in nodeIlind:
if j == w
Indx2.append{i)

for 1 in indx2:
eachone=1ist_of ancestors[i]
colorlist. append(eachomne)

colorlist = colorlist+indxl
colorlist = list{set{colorlist})
colorlist = [Ent{i) for i in colorlist]

finalecolor=[]
finalcolor={len(nodelDs) -lenf{colorlist)j*['8.75"]
for 1 in colorlist:

Finaleolor. insert(L, 'r')

#Convert the newdncestos and Che corresponding nodeIDs inte o tuple so T can use them to connect the nodes
newhncestors= tuple{list_sf ancestors)

newlodeID_anc =tuple(repeated_nodeIDs)

e = zip(newincestors,newModeID_anc)

AThis is for getting o List of colors te assign te the sdges
indicesforedges=]]
for i, in enuneratelrepeated_nodeIDs):
for u in Lndsl:
if == u
indicesforedges. append(i)

indicesforedges = list(set{indicesforedges))

finalcoloredge=[]
finalcoloredge=[len{e)-lenfindicestoredges)i*[1]

FIG. 13: Wavegraph visualization 3/4

14

for i in indicesforedges:
finalcoloredge. insertil, "8")

MMaking a List of the size of each node in order to viswelly compare the number of connections

sizes=[]

for i in range (B8,len{nodeIDs)):
eachsize= newlodeID anc. countii}
sizes.append(eachsize)

arraysizes=np.array{sizes)

finalsize=18*(arraysizes+1)

MNow plot everytiing
G=nix. Graphi)
G.add_nodes_fron{nodelDs)
G.add_pdges_from(e)

#5ize of figure and pixel resolution, for resolution set dpi=186 inside

fig=plt figure(figsize=(38,638))
axes=Fig. add_subplot(111)
axes.sel_axisbelow(True)
plt.gridl)

Bprint{ "Nodes of graph: =)
Bprint{G. nodes())

praraseters to dreaw

#For “node color™ one can choose an indivigl coler by writting “finolcoler® or choose for the color te be a function af the
window by writting "dimensionsarray”, for the “edge color® one can choose between seeing all the edges
A(by simply setting if equal to @ color .4 'r' or one can choose fo only see the connections of the nodes of g specific

window by choosing "finglcoloredge”
#dne can view the modelD"s by setting "with_labels”™ equal to "Trus"

nx. draw_networks (G, with_labels=False node_size=finaliize,pos=dic,font_size=15 node_color=dimensionsarray,width=8.5,

edge_color="8")

#Far the colorbar, this must be muled fo be able te Look at an isdividugl window
nc=nx.draw_networks_nodes(G,with_labels=False, node sire=finalsize,pos=dic,node_color=dimens lonsarray)

plt.colorbar{nc)

ATitle
plt.titlel Wavegraph for all windows', fontsize=3a)

HFant size

plt.xticks(fontsize=28)

plt.yticks(fontsize=28)

#Frequency of ticks

plt.xticks(np.arange(nin(times), max(times), 8.2})
plt.yticks{np.arange(nin(logfrequencies), max(logfreguencies), 8.1))
plt.xlabel('time (s)', fontsize=2a)

plt.ylabel('log(frequency(Hz))", Fontsize=28)

#5how and save

plt.savefig " TheNedeGraph. pag”)

plt.showl)

FIG. 14: Wavegraph visualization 4/4

	Introduction
	Coherent WaveBurst (cWB)
	Wavelet Graphs
	Bibliography
	References
	Acknowledgements

