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The research in this paper focuses solely on data analysis techniques. It is part of the development

of a data analysis tool know as ”Wavegraph” which is part of a larger analysis scheme known as

the Coherent WaveBurst (cWB). This new time-frequency search method is an alternative to the

matched filtering techniques that are usually employed in the detection of gravitational wave signals.

1. INTRODUCTION

Before discussing the specifics of the wavelet graphs

there will be a small introduction which includes: general

relativity, data analysis techniques used for the detection

of gravitational waves (including the matched filtering

technique as well as the cWB) and why these types of

data analysis are different from other kinds of astronom-

ical data analysis.

Foreword on general relativity and gravitational waves

In 1915 Albert Einstein published his theory of gen-

eral relativity, which drastically changed our concept of

”space” and consequently of ”time”. This theory relies

in the geometry of space-time to explain what we per-

ceive as ”gravity”. A corollary to this theory is that if

a massive object spins in a way that is not spherically

symmetrical then gravitational radiation will be emitted

in the form of ripples; these ripples distort the space-time

they travel through. By using laser interferometry we are

able to detect these ripples, which we refer to as ”grav-

itational waves”. Ground-based interferometers such as

LIGO (the Laser Interferometer Gravitational wave Ob-

servatory) and Virgo have been able to detect this kind

of gravitational radiation.

Overview of Gravitational Wave Data analysis
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In order to talk about gravitational wave data analysis

we ought to consider the fact that this type of analysis

is quite different from other kinds of conventional astro-

nomical data analysis. Most astronomical observations

occur through the lens of electromagnetic radiation,

and so because of this most of the data we have from

studying the universe can be found somewhere in the

electromagnetic spectrum. With gravitational wave

astronomy this is absolutely not the case. Because of the

kind of instrument we use to detect the waves (Michelson

interferometer) there are certain limitations we have

to work around, among them the following: gravita-

tional wave antennas are essentially omni-directional

(with a response better than 50% of the RMS over

75% of the sky)[1] because of this, our data analysis

systems will have to perform all-sky searches for sources

when constrained to individual detectors (although

it is theoretically possible to do directional search by

triangulation when using three detectors). Additionally,

interferometers cover three orders of magnitude in

frequency (from 10 Hz to a few kHz) and so searches

have to be carried out over this range of frequencies as

well. Polarization measurements can only be achieved

with a multiple detector network, and so algorithms that

work with data from several interferometers have to be

developed. A couple more limiting factors are the severe

demand on both our theoretical understanding of the

known waveforms and our data analysis pipeline, and

finally the tremendous amount of data we are analyzing

(a few kilobytes per second for as long as the instrument
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is running)[1].

Analyses of LIGO and Virgo data are carried out by

collaborating groups who focus on four distinct source

types: compact binary coalescences, un-modeled bursts,

continuous waves, and stochastic background[1]. How-

ever, these categories represent archetypical extremes

and many sources fall between these extremes; these

sources can be analyzed with complementary methods

that arise from the techniques developed for the four

main chategories. Figure 1 [1] shows a way in which

LIGO and Virgo searches can be broken down. As one

moves from left to right waveforms increase in duration,

while as one moves from top to bottom our previous def-

inition of what the waveform should be decreases. The

research that will be discussed in this paper focuses on

long bursts, which is not explicitly in this diagram, how-

ever, it can be classified as a category in between bursts

(lower left corner) and continuous waves (upper right cor-

ner).

FIG. 1: Gravitational waveform categories which affect search

strategies

Long bursts are expected to be emitted by compact

astrophysical sources with hydrodynamic instabilities.

Some of the examples of this category include: fallback

accretion onto a new neutron star, non-axisymmetric ac-

cretion disc instabilities, and finally non-axisymmetric

deformations in magnetars can also lead to generating

this kind of signal [5]. The wavelet graphs have been

proven successful in analyzing data coming from coalesc-

ing binaries of neutron star and/or blackholes [3](from

the two detector LIGO network) and so this is our moti-

vation for presently investigating the upper right corner

of the aforementioned diagram.

The Matched Filtering Technique

Matched Filtering is a data analysis technique that ef-

ficiently searches for signals of known shape buried in

noise. This technique consists in correlating the output

of a detector with a waveform known as a filter[4]. Given

a specific signal the task is to find the optimal template

that would produce on average the best signal to noise

ratio possible.

Most gravitational wave searches include the matched

filtering technique in one way or another. The match-

ing filtering technique is optimal [4], however, this ap-

proach requires the construction of large template banks

using precise theoretical models (For example in the case

of compact binary mergers the size of a template bank

can be in the order of 105 templates). Even though

progress has been made in constructing these template

libraries and there are good approximations of the com-

plete merger waveforms these are not from a single model.

These waveforms are built from gluing several models to-

gether, and so we do not have complete waveforms for the

full parameter space, we know there are cases where the

waveform model is not accurate (i.e high spins and high

mass ratio, or binaries in eccentric orbits), this is the

motivation for using an alternative technique.

2. COHERENT WAVEBURST (CWB)

In addition to template-based searches there is another

class of search that has been carried out for gravitational

waves from un-modeled sources, this type of method is
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independent of the large template banks [3]. This type of

detection is based on excess signal power and correlation

of signals found in different gravitational wave detectors.

This is useful in the regions of the parameter space which

have no descriptive waveforms to use as templates.

This kind of un-modeled search is expected to be less

effective than the optimal matched filters but it encom-

passes a wider class of sources that may be missed by the

template searches[2]. The Coherent Waveburst is one of

the leading data analysis pipelines used for the detection

of un-modeled transient gravitational wave events. Co-

herent WaveBurts was used to detect gravitational waves

for the first time in history (GW150914). The Waveg-

raph project exists in order to improve the accuracy of

the cWB pipeline [3]; because of this I will elaborate on

how the cWB identifies event candidates and on the se-

lection criteria for these events.

Coherent WaveBurst searches for short duration bursts

of gravitational waves using information from all detec-

tors in a network simultaneously. It operates in the fre-

quency range of 24 Hz to 2048 Hz [5]. This method

is performed using time-frequency decomposition. This

decomposition transforms a sampled time series into a

time-frequency map, the values of pixels in the map rep-

resent the energy amplitude at that time-frequency loca-

tion [2]. Since each detector has its own time-frequency

map, time-frequency maps from all detectors are com-

bined into a single map coherently by applying a time

delay with respect to the travel time of the gravitational

wave.

Coherent WaveBurst identifies event candidates as re-

gions on the time-frequency plane which have excess

power [2]. A clustering procedure is employed in order

to identify the same time-frequency event across multi-

ple decomposition resolutions. Once all of the clusters

are identified, then detection statistics are calculated for

each event candidate.

In order to identify possible event candidates Coherent

WaveBurst uses a likelihood ratio (equation 1)[2]. This is

the ratio of the joint probability of a gravitational wave

signal being present in the data to the joint probability

of no signal.

L(h+, h×) =

N∏
j

K∏
k

exp(
x2kj
σ2
kj

− (xkj − εkj(h+, h×))2

σ2
kj

)

(1)

Here xjk is the sample output strain (or total energy

in the detector), σjk is the noise variance and εjk is the

detector response.

The likelihood functional is summed over each of the

K detectors in the network and time-frequency regions

composed of N samples. The likelihood functional is an-

alytically maximized to determine estimators for h× and

h+ amplitudes [2] (the two amplitudes of the polariza-

tions of the gravitational wave). The process involves

maximizing a significant number of parameters simulta-

neously and it may allow for unphysical solutions. In

order to lessen this problem constrains are applied to the

likelihood functional [2].

Selection criteria for events

Because data collected by gravitational wave detectors

is infested with noise there are four sets of statistics which

are used for selection of true events: First, a network

correlation coefficient cc which tests the overall consis-

tency of the event candidate based on the comparison of

the reconstructed correlated signal energy (Ec) and the

residual noise energy (En) [2]

cc =
Ec

En + Ec
(2)

This network correlation coefficient varies between 0 and

1, where true gravitational wave events should have a cc

near 1.

The second criterion we use is a penalty factor, which

is a measure of consistency of reconstructed detector re-

sponses, and it is described by

Pf = kmin

√
< x2k >

< ε2k >
(3)
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The quantities < x2k > and < ε2k > are the summed

data sample amplitudes and reconstructed detector re-

sponses for a selected time-frequency region in an indi-

vidual detector k. True gravitational wave events should

have a Pf near 1 [2].

The next criterion is the energy disbalance, which is

similar to Pf . It is characterized by the mismatch be-

tween the reconstructed energy of the event and the en-

ergy of the data. It is described by the following.

Λ =

K∑
k=0

| < xkεk > − < ε2k > |

Ec
(4)

True gravitational wave events should have Λ values

near 0 [2].

Lastly, the coherent network amplitude is the main

detection statistic used to rank events, the following is

described by the equation below. This statistic (along

with cc) is the main tool used to reject various types of

glitches [2].

η =

√
Eccc

K
(5)

Here K is the total number of detectors.

The following is a table with the values of selection

criteria for each of the aforementioned statistics [2].

TABLE I: Values for selection criteria

Statistic Threshold

Network Correlation cc >0.6

Penalty factor Pf >0.6

Energy disbalance Λ <0.35

Coherent Network Amplitude η >3.0

It is important to point out that the energy disbalance

and the penalty factor pf are not as important anymore,

the main detection statistics used in the preset are the

network correlation coefficient cc and the coherent net-

work amplitude η

3. WAVELET GRAPHS

Compact Binary Coalescences

In few words the cWB extracts clusters of significant

coefficients from time-frequency decompositions which

result from the coherent combination of data from mul-

tiple gravitational wave detectors[3]. I will now elab-

orate on how these time-frequency representations are

computed.

A wavelet graph is a graph that combines the paths

from a family of chirp signals that cover a region of the

parameter space. In order to obtain said graph one first

determines the chirp path (or time-frequency-scale curve)

that collects the large wavelet coefficients associated to

a given chirp signal [3]. Figure 2 is an example of a

wavegraph with 1009 nodes for a system of coalescing

binaries in the mass range of 2.5-10 solar masses.

Generating the graph

The wavelet graphs are generated using a software

called ”Wavegraph”. This software determines which

wavelet in the Wilson basis has the maximum coupling

with the chirp we are interested in [3]. This algorithm

works in the continuous time, frequency and scale limit.

The wavelet at time t0, frequency f0 and scale a0 is ex-

pressed as:

ω0(f) = g(f − f0; a0)exp(−2πift0) (6)

Where the function g() represents the envelope. The

scale parameter is approximated by a0 = fsσ0 where fs

is the sampling frequency. The time frequency map that

we are interested in is defined by the following:

ρ20 = ρ(t0, f0, a0)2 = |
∫
ω0(f)s(f)

N(f)
df |2 (7)

Where N(f) is the noise power spectrum. What we

are looking for is the time t0 and the scale a0 which will

maximize ρ0 for a given f0
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FIG. 2: Example of wavegraph, The top image shows the

distribution of selected pixel nodes in the time, frequency,

scale space. The bottom image shows the number of nodes

per ancestor

Since chirps can always be expressed in the form of

a complex exponential s(f) = A(f)exp(iψ(f)) in the

Fourier domain, we can write equation seven as an oscil-

latory integral and then evaluate it using the stationary

phase approximation, and so we obtain:

ρ20 = ρ(t0, f0, a0)2 =
fs|A(f0)|2√
πN(f0)2a0

(8)

This is what the time-frequency-scale map ρ looks like.

Chirp paths are computed this way and then combined

into the wavelet graph that collects the selected pixels

and their connection with the previous pixel in the path

(the ancestors).

After the wavegraph is generated the output is a list of

nodes, each node has eight characteristics which include:

the node ID, a time, frequency and scale indices, an aver-

age value, a stardard deviation value, a list of ancestors

associated with that node. Each node also has a position

in the time-frequency-scale plane. We did not have any

tools for the visualization of the connections between the

nodes of the wavegraph. Having said tool is necessary in

order to understand and diagnose the graph, and so my

project focuses on generating a visual representation of

these wavelet graphs.

Data visualization algorithm for wavelet graphs

The algorithm for the visualization of wavegraphs that

I have written (Figures 7,8,9,10) takes each node and it

assigns them a position depending on their time and fre-

quency location, afterwards it assigns the node a color

depending on the scale used (this is a representation of

the third dimension) and a size depending on the num-

ber of connections associated with said node. Then each

node is connected to its ancestors with a black line. If

one is interested in a specific scale the code can be easily

modified (Figure 10 lines 179-184) to show, in red, the

nodes associated with that scale, their respective ances-

tors and each of their connections. This feature exists in

order to help visualization since it is certainly easier to

focus on a specific scale (scale) at a time in order to un-

derstand the behavior of the graph. Testing my code on

previously tested data from simulations is a good way to

get a feel for if the code is working properly or not. This

is why the first example of my wavegraph visualization

uses data from coalescing binaries (upper left corner of

diagram in FIgure 1) even though this paper focuses on

long bursts.

Figures 3 and 4 show a Wavegraph of 533 nodes com-

puted using 2950 Binaries; in the first figure we see every

scale and every connection with all 533 nodes, and in

the second figure we select a specific scale to only show
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the nodes associated with that scale and their ancestors.

One modification that could be done to the code in the

future would be for ancestors and nodes to have different

colors in order to be able to identify them easily.

Long bursts from compact astrophysical sources with

hydrodynamic instabilities are expected to decrease in

frequency approximately linearly in time, these unmod-

eled transient events are expected to have durations be-

tween 10 and 500 seconds [5]. I wrote a short code (Fig 6)

that generates an arbitrary chirp signal whose frequency

increases linearly in time by entering four user inputs:

the initial and final frequencies, the sampling frequency

and the total time of the chirp. Using this code I gener-

ated a waveform that increases in frequency going from

100 Hz to 200 Hz.

FIG. 5: Wavegraph created from one single chirp of frequency

which increases linearly in time

Afterwards I ran this chirp through wavegraph to gen-

erate the time-frequency-scale graph and finally I plotted

all the nodes by using the wavegraph visualization code

I wrote. The result is shown in figures 5 and 6, where

figure 5 is the graph for all the scales (4 through 7) and

figure 6 is the same but limiting the code to a window

of a=7 . The graph grows linearly with time, as we we

would expect intuitively.

FIG. 6: Wavegraph created from one single chirp of frequency

which increases linearly in time

Once I generated figure 5 and was sure my wavelet

graph visualization scheme was working properly I ran

some time-strain data (which is chirping downward), pro-

vided by my advisor, through wavegraph. After the

graph was generated I ran the file through my visual-

ization code.

FIG. 7: Wavegraph from time-strain data, chirping downward

from 209 to 110 Hz

Surprisingly the resulting graph did not follow the cor-

rect chirp path, and so I generated a chirp down signal by

using my generic waveform generator (figure 7) in order

to emulate an analogous signal to the time-strain chirp.
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I used the same parameters (initial,final and sampling

frequency and total chirp path) f0 = 110 Hz, fend = 209

Hz, fs = 1024 Hz and tf = 9 seconds as the time-strain

data has.

The time-strain data plotted using the visualization

code resulted in Figure 7, and the emulated signal using

the same parameters resulted in Figure 8. Comparing

figures 5 and 6 with figures 7 and 8 it is apparent that

the graph is not as smooth, and if one looks at the node

numbers and the chirp path taken between these nodes

one can see that the graph actually goes back in time

(and sometimes forward and then back in time) which is

borderline nonesensical.

FIG. 8: Wavegraph from generic waveform generator, chirp-

ing downward from 209 to 110 Hz

My code shows evidence that the sorting procedure for

finding connections between nodes does not work for long

bursts of decreasing frequency, it exclusively works with

coalescing binary systems (since they chirp upward) and

with systems that increase linearly in frequency (such as

the ones I generated using the generic graph code). The

issue became more obvious when I generated a graph

from a generic waveform chirping downward from 173 to

119 Hz (Figure 7), the chirp path taken goes back and

forward in time and it is rough in contrast to the smooth

chirp path of the graphs increasing linearly in frequency.

The need for a new sorting scheme in order to connect the

nodes properly is evident, and so the next step for the

visualization of wavegraphs should focus on diagnosing

the problem of why the scheme seems to fail with data

that decreases in frequency with time.

FIG. 9: Wavegraph generated from generic waveform chirping

downward from 173 to 119 Hz
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FIG. 3: Example of wavegraph for coalescing binaries. Com-

puted using 2950 binaries, the graph has 533 nodes, in this

graph we see nodes of every scale with different colors, the

bigger the scale the lighter the color
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FIG. 4: Example of wavegraph for coalescing binaries focusing

on a specific scale of size 7. Computed using 2950 binaries,

the graph has 533 nodes total, in red we see the nodes of scale

7 and their ancestors
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FIG. 10: Generic Waveform Generator
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FIG. 11: Wavegraph visualization 1/4
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FIG. 12: Wavegraph visualization 2/4



14

FIG. 13: Wavegraph visualization 3/4
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FIG. 14: Wavegraph visualization 4/4
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