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Abstract

Gravitational wave detection faces sensitivity limitations due to the presence of noise sources.

One of these types of noise, quantum noise, limits the future sensitivity of the LIGO and

Virgo gravitational wave detectors. To overcome this quantum noise limit and increase de-

tector sensitivity, the injection of frequency dependent squeezed light must be implemented

to maximize the performance of these interferometers. The optics of gravitational wave de-

tectors are very similar to the ones present in the high precision measurement experiments

at Laboratoire Kastler Brossel. At Laboratoire Kastler Brossel, a frequency dependent

squeezed light source is being coupled to an optomechanical resonator to saturate mea-

surement sensitivity in the quantum regime. In addition to the characterization of the

microresonator and the alignment of the second harmonic generator cavity, this paper fo-

cuses on the proposed three mirror filter cavity to achieve frequency dependent squeezing

through tunable line width.

1 Introduction

In 1916, Albert Einstein foresaw the existence of gravitational waves, based on his theory of

general relativity; however, it was not until nearly 100 years later that the first directly detected

ripples in the space-time curvature, namely GW150914, would confirm that prediction (Abbott

et al., 2016). Gravitational waves are transverse quadrupole waves propagated by objects whose

motion is not spherically or rotationally symmetric. The distortion of space-time by these

objects produces these waves that travel at the speed of light and carry that distortion. Yet,

the strain of these gravitational wave distortions are extremely minuscule—on the order of 10-21.

Despite multiple detection efforts developing since 1960s, this “zepto-order” remains an almost

constant obstacle. Because of their small size, all the noise sources present—seismic, thermal,

quantum, etc.—initially completely masked the possible detection of these minute signals until
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2015, when the spectacular coalescence of two black holes marked the first direct gravitational

wave detection. Much of the research on gravitational wave detectors such as LIGO and Virgo is

concerned with reducing noise to expand the detection range and increase detection probability

of these cosmic signals.

Current gravitational wave detectors are based on the Michelson interferometer, which is

designed to measure changes in distance between a central beam splitter and two arm cavities

with test masses at the ends (Bond et al., 2017). As seen in Fig. 1, gravitational wave detectors

face a lot of noise hindrances. Various technological configurations of detectors can increase

sensitivity and help overcome the noise hindrances. Currently, detector sensitivity is limited

by the quantum noise in laser light. The two sources of this type of noise are quantum shot

noise (QSN) and quantum radiation pressure noise (QRPN), the former of which comes from

measurement uncertainty associated in photon arrival time in the photodiode at the interfer-

ometer output. The latter, QRPN, is the result from the recoil of mirrors due to amplitude

fluctuations in the laser light (Chua et al., 2014). One proposed technique to decrease this noise

is implementing quantum squeezed light in the detectors.

Figure 1: Advanced LIGO Design Sensitivity Curve, with expected noise limitations. Quantum
noise poses a limit on the mid to high frequency range of the audio-band. Image from Hild, S.

1.1 Squeezed States of Light

Squeezed light injection is a technique used to reduce the quantum noise that is an inherent

property of electromagnetic radiation. This unavoidable noise is ruled by Heisenberg’s uncer-

tainty principle which describes the fundamental uncertainty in measuring two variables (Chua

et al., 2014). For laser light, the uncertainty relation for amplitude and phase quadrature is

[
X̂1, X̂2

]
= 2i (1)

∆X1∆X2 > 1 (2)

Now, the uncertainty principle constrains the product of error in these two variables; however,

it does not necessarily constrain each variable’s individual uncertainty. Therefore, there is room
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for manipulation. Uncertainty in one variable can be decreased in exchange for the increase in

uncertainty in the other’s as long as the product still obeys Heisenberg’s uncertainty principle.

Here, amplitude uncertainty is squeezed by a factor of S.

∆X1 < 1/S ∆X2 > S (3)

In optics, this manipulation can be performed on phase and amplitude uncertainties of quan-

tum states of light through nonlinear optical interactions such as those produced by nonlinear

crystals (Oelker et al., 2014). Coherent states of light are often represented using a quantum

phasor diagram. This diagram depicts how the quadrature uncertainty of a coherent state can

be squeezed but still retain the same area of uncertainty. When the noise of the phase quadra-

ture, ∆X2, is decreased, the noise of the amplitude quadrature, ∆X1, increases in response as

in Fig. 2. One can choose which quadrature to “squeeze” but there is always a tradeoff.

Figure 2: Phasor representation of (a) a coherent state and (b) a phase-squeezed state with
proportional increase in uncertainty in the amplitude quadrature. Image from Hild, S.

Figure 3: Gravitational wave detector (a) quantum noise curve. Shot noise limits higher frequen-
cies and radiation pressure noise dominates the lower frequency regime. Expected sensitivity
increase (b) if optimal frequency dependent squeezing is applied to gravitational wave detectors.
Image from Chua, S. et al.

Vacuum fluctuations prove a hindrance to gravitational wave detectors. LIGO has already

started implementing the injection of squeezed states to improve the performance of their de-

tectors sensitivity. Using squeezed light, LIGO was able to reduce quantum shot noise which

dominates in the higher frequency region of the gravitational wave frequency band. This reduced

quantum noise at frequencies above 200 Hz by a significant amount (Aasi et al., 2013). Despite

3



the initial success of this project, it did not tackle the limit of radiation pressure noise in the

lower frequency region as it was not a concern since the detectors did not have the sensitivity

to encounter QRPN in the lower frequency range at that time. The two types of quantum noise

have a greater effect in different regions of the gravitational wave frequency band. Thus, it is

naturally ideal to introduce frequency dependent squeezed light to avoid degrading sensitivity

in any frequency region. Rotating the squeezing ellipse around the standard quantum limit

(SQL) can maximize sensitivity in the quantum noise limit as in Fig. 3. Depicted below are

the SQL of two experiments of interest.

Figure 4: Quantum limit for (A) the resonant mode of the micropillar resonator and the quantum
limit for (B) Virgo gravitational wave detector. Image from Chua, S. et al.

To achieve frequency dependent squeezed light, the current most developed method is a

filter cavity. To achieve ideal rotation of the squeezing ellipse, the line width, or full-width-at-

half-maximum (FWHM), of a signal has to match the SQL of the signal. When these are the

same, the desired rotation is achieved. Fig. 5 depicts the squeezing rotation which occurs due

to the phase dispersion of the cavity.

Figure 5: In the upper plot, carrier sidebands undergo 180◦ rotation at the maximum reflection
intensity point and critical phase change point. The lower plot shows the squeezing ellipse
rotation with respect to phase change. At the inflection point of the gradient there is a 90◦

phase change. Ideally, the point of rotation would occur at the same point of the SQLs. Image
from Chua, S.
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1.2 Frequency Dependent Squeezed Light for a Micromechanical Resonator

The Optomechanics and Quantum Measurement group at Laboratoire Kastler Brossel conducts

experiments involving the optical processes synonymous to those in gravitational wave detectors.

The micropillar experiment at Laboratoire Kastler Brossel aims at incorporating squeezed light

techniques to decrease the quantum noise of a macroscopic mechanical oscillator. Thermal noise

is lowered by enveloping the mechanical oscillator and the optical cavity within a cryogenic

environment for the possibility of quantum state observation. Injection of squeezed light states

will be needed then to decrease the quantum noise associated with radiation-pressure effects

of the interface between the laser light and the quartz micropillar mechanical oscillator (Kuhn

et al., 2014). This gives way for measurement sensitivity improvement beyond quantum limits,

which can later be carried over to gravitational wave detector design.

1.3 Project

The squeezing experiment itself at Laboratoire Kastler Brossel involves three components: a fre-

quency independent squeezing source, a filter cavity, and the optomechanical system. Through

second order nonlinear interactions at the SHG and the OPO, a squeezed light state is yielded

(Chua et al., 2014). However, this does not produce frequency dependent squeezed light. There-

fore, the introduction of a unique three mirror filter cavity to this system can produce effective

frequency dependent squeezing where the squeezed quadrature changes based on desired ap-

plication. After this development, the frequency dependent squeezed light source will then

be coupled to the optomechanics and quantum measurement experiment, as seen in Fig. 6.

Despite the high precision experiment’s current use of a quartz micropillar resonator, another

candidate for quantum level measurements is the wheel resonator. The wheel resonator is a

“low-deformation mirror” micro-oscillator made out of silicon, a material which has a highly

developed manufacturing history. With the introduction of this resonator to the experiment, a

characterization of its properties is needed.

The project examined the viability of a three mirror cavity with tunable reflectivity for

the frequency dependent squeezed light source, review the alignment of the SHG cavity, and

characterize the wheel resonator for the high precision optomechanics experiment.

Figure 6: Overview of the squeezing and optomechanics experimental set up. The light blue
shaded parts include the components of the experiment focused on in this project. Image from
Chua, S. et al.
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2 Three Mirror Filter Cavity

To achieve ideal frequency dependent squeezing, half the full-width-at-half-maximum of the

filter cavity must be the same as the standard quantum limit Fourier frequency (in the case for

gravitational wave interferometers). However, the SQL Fourier frequency is dependent on dif-

ferent experimental factors that can change. Therefore, a filter cavity that can tune its FWHM

would be ideal to follow the changes in SQL Fourier frequency. The FWHM of a cavity signal

in conjunction with free spectral range (spacing of adjacent resonance) gives the finesse of a op-

tical system, which characterizes as the Q factor does to a mechanical system. Eq. 4, describes

FWHM as a relationship of free spectral range, FSR, and finesse, F . In addition, in Eq. 4,

FWHM is given as a function of the reflectivities of the cavity mirrors, r1 and r2, cavity length,

L, and the speed of light, c.

FWHM =
FSR

F
FWHM =

c

2L

(1− r1r2)
πr1r2

(4)

Changing mirrors every time to adjust FWHM is not efficient. A cavity with tunable reflec-

tivities is necessary. We can devise a cavity system with this ability by replacing the front

mirror of a Fabry-Perot cavity with an additional cavity. This introduced cavity can adjust

its reflectivity by changing cavity length. Since this two mirror front cavity has a total reflec-

tion and transmission amplitude it is not unlike a singular mirror component which similarly

has its own reflection and transmission amplitude. Hence, the first cavity acts as a “mirror”

with adjustable reflectivity. With this, the FWHM of the whole three mirror system can be

adjusted by simply changing the length of the first cavity which changes the reflectivity of the

first “mirror.” The FWHM can be tuned to match SQL Fourier frequencies and achieve optimal

frequency dependent squeezing for different systems.

2.1 Two Mirror Cavity Formalism

A cavity to induce frequency dependent squeezing would follow the design based on a Fabry-

Perot resonator. Traditionally, a Fabry-Perot resonator is a linear optical cavity with two

reflective mirrors.

Figure 7: Coupling field amplitudes at mirror and space components. Image from Bond, C. et
al.

To observe the Lorentzian curves of the signal resonance condition in the cavity, field ampli-

tude are necessary for the transmission and reflection of the system. To derive these coefficients

for such a system, one can use transfer matrices (Bond et al., 2017). For the field amplitudes

6



at a mirror as in Fig. 7, the transfer matrix is as follows, where r and t each represent the

amplitude reflectivities and amplitude transmittances respectively.(
a1

a4

)
=
i

t

(
−1 r

−r r2 + t2

)(
a2

a3

)
(5)

Field amplitudes in free space, as within a cavity and as seen in Fig 6, are described by the

following transfer matrix. Here, D describes the length of the free space in which the field

propagates and k describes the wavenumber of the field.(
a1

a4

)
=

(
eikD 0

0 e−ikD

)(
a2

a3

)
(6)

With these matrices the transfer matrix for a Fabry-Perot cavity can be computed. This

matrix describing the system, in Eq. 7 and Eq. 8, contains the reflection and transmission field

amplitudes of the first mirror, r1 and t1, and the reflection and transmission field amplitudes

of the back mirror, r2 and t2, along with the free space within the cavity.

Mcav = Mmirror ×Mspace ×Mmirror (7)

=
−1

t1t2

(
eikD − r1r2e−ikD −r2eikD + r1e

−ikD

−r2e−ikD + r1e
ikD e−ikD − r1r2eikD

)
(8)

2.2 Design of Three Mirror Cavity

The preliminary step in testing the viability of a three mirror filter cavity is in approximating

a design for such a cavity. Fig. 8 depicts the three mirror cavity design examined.

Figure 8: Three mirror cavity design. The cavity of mirror r1 and mirror r2 acts as one effective
“mirror” with a collective reflectivity of r12. Created using gwoptics component library.

Now, with the formalism of optical system matrices in Section 2.1, amplitudes for the trans-

mission and reflection of a three mirror cavity were derived. A transfer matrix can be computed

with the understanding of the components definitions and subsequently the transmission am-

plitude coefficient (Eq. 9) and the reflection amplitude coefficient (Eq. 10) from that and the
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scattering matrix.

a2
a0

=
eid1k+id2kt1t2t3

(1− e2id1kr1r2)(1− e2id2kr3(r1 +
e2id1kr2t21

1−e2id1kr1r2
))

(9)

a4
a0

= r1 +
e2id1kr2t

2
1

1− e2id1kr1r2
+

e(2id1k+2id2k)r3t
2
1t

2
2

(1− e2id1kr1r2)2(1− e2id2kr3(r1 +
e2id1kr2t21

1−e2id1kr1r2
))

(10)

2.3 Results

With this three mirror cavity design, it is imperative to know if the first two mirrors do indeed

act as one “mirror.” The length, d1, was scanned and examined for reflection amplitudes. As

seen in Fig. 9, changing the length of the first cavity “mirror” affected the reflection amplitude.

This confirms that the reflectivity of the first cavity “mirror” can be manipulated by changing

the its length. Now that it is confirmed that the first cavity acts as its own “mirror,” verification

of the three mirror cavity’s performance can be done.

Figure 9: Reflection intensity of front “mirror” with varying d1 lengths.

An important component in obtaining frequency dependent squeezing is achieving FWHM

values that match SQL positions of signals. These FWHM values essentially affect the positions

of the rotation of the squeezing ellipse. To examine the design of the cavity in response to desired

FWHM values, five FWHM values that spanned over the regime of gravitational wave detectors

to optomechanical experiments like the micropillar experiment were selected—100 Hz, 1000 Hz,

10000 Hz, 50000 Hz, 100000 Hz. The cavity length was set so that the first two mirror cavity

was at 10 cm and the second two mirror cavity was at 1 meter with room for tuning. The total

length of 1.1 meters is practical to the squeezing set up at Laboratoire Kastler Brossel.

In order to obtain such narrow FWHM values, the two mirrors of the first cavity “mirror”

needed high reflectivities from the outset or else the sharp narrow linewidths would never be

produced by the system. In this case, with the back mirror of the system having a reflectivity of

practically 1, the first “mirror” needed to have a collective reflectivity of R = 0.999. With the
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high reflectivities in the mirrors, the only necessary variable to adjust to achieve desired FWHM

values was to change the length of the first cavity, d1. Doing this allowed the reflectivity of the

first “mirror” to be adjusted and produce desired FWHM values. The different effects of each

FWHM value can be observed on the reflection intensity of the three mirror cavity (Fig. 10).

Figure 10: Reflection intensity for different full-width-at-half-maximum values (a) at a full plot
range and a (b) zoomed in plot range. The zoomed in plot reveals the reflection amplitudes
that are too shallow to appear in a plot that accounts for the greatest range.

The more telling plot, however, is the phase plot at different FWHM values. The phase plot

indicates the rate of rotation of the squeezing ellipse. At the inflection point of the gradient,

the squeezing ellipse undergoes a 90◦ phase change, a purely amplitude squeezed state changes

into a purely phase squeezed state or vice versa. The FWHM values affect the steepness or

rate of this rotation as evident in Fig. 11. This confirms that a three mirror cavity can achieve

frequency dependent squeezing by changing its FWHM values to match the SQL of a desired

application system.

Figure 11: Phase change of signals with different full-width-at-half-maximum values. Each
phase curve goes from 0 to 2π.
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3 Alignment of Second Harmonic Generator Cavity

The Second Harmonic Generator (SHG) is an important component in the squeezing setup. It

is where one of the nonlinear optical stages occur in the generation of squeezed light. The SHG

consists of a nonlinear crystal in an oven within a Fabry-Perot cavity. At the SHG, the main

laser is frequency doubled though the interaction with a nonlinear crystal which is kept at a

stable temperature. In the nonlinear interaction, by the conservation of energy, the main laser

is frequency doubled. This degenerate nonlinear optical process, therefore, converts 1064 nm

light to 532 nm and sends it to the remaining parts of the squeezing set up, such as the Optical

Parametric Oscillator (OPO).

The SHG cavity was already constructed and mounted at the time in the configuration

shown in Fig 12. Yet, it was not aligned optimally. By focusing on pointing and walking the

beam, the process for better alignment was conducted while observing the transmission response

of the cavity in real time. Through this alignment process, the coupling to the fundamental

mode of the cavity was increased while the coupling to higher order modes was minimized. This

provided me with experimental experience in optics.

Figure 12: Second Harmonic Generator (SHG) of the squeezing experiment at Laboratoire
Kastler Brossel. Its main components are the two mirrors forming a cavity and a nonlinear
crystal set in an oven for temperature control.
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4 Characterization of the Wheel Resonator

4.1 A “Low-Deformation” Mirror

The wheel resonator is a candidate for high precision measurement experiments in optome-

chanics. With its high optical finesse of 4 × 104 and high mechanical quality factor of 105,

the micro-oscillator has ultra-low optical and mechanical losses (Serra et al., 2012). In con-

struction, the wheel resonator is a resonator made out of thick silicon with a highly reflective

mirror coating which yields high quality factors. The “low deformation” design is supported by

torsional springs to avoid rotation and flexural springs for uniform vertical displacement of the

mirror sans bending as seen in Fig. 13 and Fig. 14. It is a potential device to be complimen-

tary to Laboratoire Kastler Brossel’s quartz micropillar resonator because of the technological

developments in silicon. Therefore an initial characterization of this device was conducted.

Figure 13: Scanning electron microscope image of (a) front side and (b) back side of a “low-
deformation mirror” resonator made of silicon with high reflectivity coating. Image from Serra,
E. et al.

Figure 14: Modal representation of two designs. The (a) ”low-deformation mirror” provides
uniform displacement unlike the (b) previous design. Image from Serra, E. et al.

4.2 Results

To characterize the wheel resonator, mechanically-driven response measurements and ringdown

measurements were made using a simple Michelson interferometer set up as shown in Fig. 15. To

take these measurements, firstly, many alignments were needed to guarantee high fringe contrast,

involving maximal fringe amplitude size, as an electrical signal scanned arm length changes with

a piezo-electric actuator (PZT) in the local oscillator path. This involved aligning various lenses

and both the local oscillator and wheel resonator paths by walking the beam. Then, once the

Michelson interferometer was optimally aligned, the resonance frequency was recorded using a

network analyzer to measure the PZT-driven displacement of the wheel resonator. This can
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Figure 15: Set up of Michelson interferometer used for wheel resonator characterization. The
wheel resonator is mounted in a vacuum chamber that can reach a temperature of approximately
2 Kelvin. Created using gwoptics component library.

both test the mechanically-driven response of the resonator and make a measurement of the

mechanical resonance frequency. To retrieve the resonance frequency, a frequency sweep was

induced to measure where the maximum vertical displacement occurs of the resonator’s central

mirror. The first mechanically-driven response measurements were taken at room temperature

(300 K) and atmospheric pressure and yielded a resonance frequency of 262.084 kHz (Fig. 16).

Figure 16: Frequency sweep of the mechanically-driven wheel resonator at room temperature
and atmospheric pressure with a red Lorentzian fit. Peak frequency yielded was 262.084 kHz.

To measure the quality factor (Q factor) of the resonator, a ringdown measurement was

performed. A ringdown measurement involves driving the resonance to a steady state and then

abruptly turning off the drive and measuring the decay in vibrational energy over time. The
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slope of this decay gives us the Q factor by the following relation, where a is the slope of the

decay.

Q =
f2π10 log e

a
(11)

At room temperature, the Q factor measured was 7.689× 103 (Fig. 17). This Q factor can be

increased in measurements with lower temperatures and lower atmospheric temperature due to

its temperature dependence.

Figure 17: Ringdown measurement of the wheel resonator at room temperature and atmospheric

pressure. The red linear fit yields a quality factor of 7.689× 103.

Using the cryogenic vacuum chamber, the temperature of the sample was brought down to 6

K. Once again a ringdown measurement was taken at this temperature (Fig. 18). The drop in

temperature resulted in a Q factor of 5.910× 105.

Figure 18: Ringdown measurement of the wheel resonator at 6 K. The red linear fit yields a
quality factor of 5.910× 105.
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5 Conclusion

This project investigated the feasibility of a three mirror filter cavity and characterized a micro-

resonator for the high precision measurement experiments at Laboratoire Kastler Brossel. From

the results, it can be concluded that a three mirror filter cavity design is a feasible system to

produce adjustable reflectivity and hence adjustable FWHM. This is essential for frequency

dependent squeezing and therefore its production would be novel for the quantum measurement

experiment at Laboratoire Kastler Brossel. The next step is to consider further features for its

future implementation. For example, the investigation conducted assumed plane waves rather

than Gaussian beams. In addition, a hybrid Pound-Drever-Hall technique needs to be added

to this system for locking the system at desired conditions. This poses quite an obstacle for a

two cavities coupled design leaving no space for locking technique for the cavity of the first two

mirrors.

The initial characterization of the wheel resonator yielded reasonable data. Yet, as with

most experiments, many more trials of the resonance frequency and Q factor measurements

must be conducted to get robust results for the wheel resonator before its use in the quantum

measurement experiment. The wheel resonator already proves complimentary due to its con-

struction out of silicon a material with a more technologically developed manufacturing history

than the quartz in the original micropillar resonator.

Aligning the SHG and Michelson interferometer provided me with my first experimental

experience with optics. I learned about the techniques for alignment including beam pointing

and walking the beam. Aligning the SHG allowed me to examine coupling to the fundamental

mode of the cavity. Optimizing the Michelson interferometer also proved important in revealing

how important optimal alignment is in later measurement accuracy.
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