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Gravitational wave observatories LIGO and VIRGO are beginning to detect a population of

merging binary black holes, allowing researchers to perform basic inferences about the distribution

of black holes in the universe. As an increasing number of mergers are detected, more sophisticated

models can be used. We investigate how well the physics of pulsational pair-instability supernovae

can be inferred with a simple model of the binary black hole mass distribution. By performing

a Bayesian statistical analysis of the results of simulations from the population synthesis code

COMPAS, we find that a pulsational pair-instability supernovae motivated model is a better fit

to the binary black hole mass distribution compared to a simple power law model, presenting KL-

divergences of 0.05 and 0.41, respectively. However, the model parameters intended to describe a

pile-up of black holes due to pulsational pair-instability supernova instead fit to an abundance of

black holes caused by the treatment of mass transfer stability in COMPAS simulations.

I. INTRODUCTION

With the growing number of merging binary black hole

observations being detected by gravitational wave obser-

vatories such as the Laser Interferometer Gravitational-

Wave Observatory (LIGO) and Virgo, we are able to

learn an increasing amount about the mass distribution

of binary black holes in the universe. This information

can help researchers understand the evolution of these

black hole systems. There are three primary channels of

binary black hole evolution: classical isolated binary evo-

lution, chemically homogeneous evolution, and dynami-

cal formation, which are all shown in Figure 1.

Classical isolated binary evolution occurs when a bi-

nary star system with a wide orbit undergoes mass trans-

fer, resulting in a common envelope of gas that creates

friction within the system. This brings the binaries closer

together as they become black holes. In chemically ho-

mogeneous evolution, a binary pair with a tighter orbit is

tidally locked and rapidly spinning, preventing the stars

from expanding as they die. This allows them to evolve

and become black holes despite their tight orbit. Lastly,

dynamical formation occurs when black holes in dense ar-

eas of space such as star clusters are brought together by

interactions with other bodies such as stars. This forms

a binary black hole system [1].

The question we now ask is how can we make accu-

rate models of the distribution of binary black holes in

the universe? It is impossible to study every single star

in the sky. Therefore, we depend on different methods

to help predict the distributions of astrophysical bodies

in the universe. Among these methods are population

synthesis, which uses the real observations of stars made

by scientists, and population inference, which uses as-

trophysical theories such as the channels of binary black

hole evolution described in the previous paragraph.

Population synthesis combines observations of nearby

stars and stellar evolution theories to develop models

for astrophysical populations in the universe. Compact

Object Mergers: Population Astrophysics and Statistics

(COMPAS) is a rapid Monte-Carlo code that uses pop-

ulation synthesis to simulate the evolution of binary sys-

tems [2]. This code allows for the simulation of millions

of stars with different initial conditions to see how they

and their remnants evolve. In particular, we can use the

results from COMPAS simulations to analyze the mass

distribution of remnant black holes that become binary

black hole mergers.

Another method for modeling black hole distributions

is population inference. To describe a distribution of bi-

nary black hole mergers in this way, we choose a phe-

nomenological model based on astrophysics theory, pop-

ulation synthesis models, and real, physical observations.

Then we apply Bayesian inference methods to infer the

hyperparameters of the model, providing insight into the

physics driving the shape of the distribution [3].

In this paper we explore how the binary black hole

mass distributions produced via population synthesis in
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FIG. 1. a) Classical isolated binary evolution. b) Chemically homogeneous evolution. c) Dynamical formation.

This picture, from Mandel and Farmer [1], shows the three primary evolutionary channels for binary black hole systems and

visually describes the main stages of each one.

COMPAS simulations compare to astrophysically moti-

vated models generated with population inference. This

is done by fitting a phenomenological model to the bi-

nary black hole mass distribution from COMPAS and

using the Kullback-Leibler (KL) divergence as a measure

of how much the two probability distributions diverge. In

addition, we see how well a simple power law compares.

II. METHODS

A. Building a Binary Black Hole Population with

COMPAS

We use COMPAS to simulate the evolution of 12 mil-

lion binary star systems with 12 different metallicities.

For this analysis, we take only the results that describe

systems that produce binary black hole systems that

merge within the age of the universe. Figure 2 shows

the primary mass distribution from these results.

Next, we process the data to convert the histogram

shown in Figure 2 to a probability distribution weighted

by both metallicity and cosmic history in order to ob-

tain a more representative binary black hole population.

Using Eq. 9 in Barrett et al. [4] as a basis, we find the

distribution of merging binary black holes as a function

of redshift:

d3Nmerge

dts dVc dM
(z) =

∫
dZ

∫
dτdelay

[
d3Nform

dMformdτdelaydM
(Z)

× d3Mform

dtsdVcdZ
(Z, tform = tmerge(z) − τdelay)

]
(1)

where Nmerge is the number of mergers, ts is the source

time, Vc is the comoving volume, M is the primary black

hole mass, z is redshift, Z is metallicity, τdelay is the time

delay between the formation time tform of the star and

the merger time tmerge of the binary black hole system,

Nform is the number of mergers formed, and Mform is

the star formation mass.

The first term in the integrand in Eq. 1 represents

the rate of binary black hole formation per unit star for-

mation mass (which is obtained from COMPAS simula-

tions), while the second term represents the metallicity



3

FIG. 2. Mass distribution of primary black holes in

merging binaries. This histogram shows the distribution of

primary black holes that were created by evolving 12 million

binary star systems in the population synthesis code COM-

PAS. An abundance of black holes are formed around 15 so-

lar masses due to the treatment of mass transfer stability in

COMPAS. At the time of writing, a paper investigating this

theory is in prep.

specific star formation rate. We use the star formation

rate as a function of redshift z by Madau and Dickinson

[5] and the star formation rate as a function of metallicity

from Langer and Norman [6] given by Eqn. 8 in Mandel

and de Mink [7]. A visual representation of the second

term is shown in Figure 3.

Next, following Eq. 16 from Barrett et al. [4], we mul-

tiply by the rate of change of comoving volume with red-

shift, as well as the rate of change of the source time with

observer time and integrate over the merger redshift:

dN

dtobsdM
=

∫
dz

[
d3Nmerge

dtsdVcdM

dVc
dtobs

]
(2)

where N is the number of binary black holes, ts is the

time in the source frame, and tobs = (1 + z)ts is the time

in the observer’s frame. The result is the probability dis-

tribution for binary black hole mergers in the universe as

exists today, accounting for metallicity and cosmic his-

tory. This result is shown in Figure 4.

FIG. 3. Metallicity specific star formation rate. Each

curve in the figure above is a probability distribution show-

ing the amount of mass being formed into stars per unit vol-

ume per unit time as a function of metallicity for a different

redshift. The vertical blue lines indicate the metallicities of

the binary systems that were simulated in COMPAS. These

curves are used to weigh the binary black hole mass distribu-

tion that is output by COMPAS.

FIG. 4. Total merger rate considering cosmic history

and metallicity. The spikes at masses of approximately 15,

20, 25, and 31 solar masses are artificial and are due to the

discrete grid of metallicities used in COMPAS simulations.

The wider peak around approximately 15 solar masses is due

to the treatment of mass transfer stability in COMPAS. At

the time of writing, papers investigating these features are in

prep.
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FIG. 5. Astrophysically motivated model for the bi-

nary black hole primary mass distribution with (hy-

per)parameters as specified in Talbot and Thrane [3].

In this model we see a pile-up of binary black holes at around

35 solar masses due to pulsational pair-instability supernovae.

We note a cutoff at 40 solar masses, which is due to typical

pair-instability supernovae.

B. The Phenomenological Model

The method used to develop the probability distribu-

tion for the binary black hole mass spectrum for our phe-

nomenological model is that as described in detail in Tal-

bot and Thrane [3] and shown in Figure 5. In this study,

we generate only a one-dimensional probability distribu-

tion that will only consider the primary black holes. This

is the model to be fit to the COMPAS distribution.

The model is motivated by the presence of pulsa-

tional pair-instability supernovae, a supernova imposter

event. This event occurs when a star appears to un-

dergo a typical pair-instability supernova where energy is

lost through electron-positron pair production. However,

rather than entirely explode, the star sheds only some of

its mass and continues to undergo a core collapse, re-

sulting in a pulsational pair-instability supernova. These

stars range in mass of between 100 and 130 solar masses

and their remnants are black holes expected to be be-

tween 30 and 40 solar masses [8]. The cut-off in the

model at approximately 40 solar masses is due to the

pair-instability supernovae which do not leave remnants

behind, as shown in Figure 6 from Heger and Woosley

[9].

This model has free (hyper)parameters α, β, mmax,

mmin, λ, mpp, σpp, and δm, which describe the spectral

index of the primary mass for the power-law distributed

FIG. 6. Singular stellar evolution at zero metallicity.

This figure shows the mass of the remnant left behind when a

star dies as a function of the star’s initial mass. The model in

Figure 5 incorporates the astrophysical phenomena displayed

by this plot; specifically, pair-instability and pulsational pair-

instability supernovae.

component as the mass spectrum, the spectral index of

the secondary mass, the maximum mass of the power-

law distributed component as the mass spectrum, the

minimum mass, the proportion of primary black holes

formed via pulsational pair-instability supernovae, the

mean mass of black holes formed via pulsational pair-

instability supernovae, the standard deviation of masses

of black holes formed via pulsational pair-instability su-

pernovae, and the mass range over which the black hole

mass spectrum turns on, respectively.

C. Fitting Methods

We perform a best-fit of the one-dimensional phe-

nomenological model and a best-fit for a simple power

law to the COMPAS distribution. The parameters of the

phenomenological model are discussed in Section II C. In

the power law model, the only free parameters are α,

mmax, and mmin. The other parameters are fixed to be

λ = 0, mpp = 35, σpp = 1, β = 0, and δm = 0. The

free parameters are not bounded. The optimization al-

gorithm basinhopping in Python is used to identify the
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FIG. 7. Fitting phenomenological models to a binary

black hole mass distribution from the population syn-

thesis code COMPAS. The blue curve represents the mass

distribution from COMPAS, the orange curve the phenomeno-

logical model motivated by pulsational pair-instability super-

novae, and the green curve a power law fit. Visually, we can

see that the orange curve seems to fit the distribution very

well, whereas the green curve does not.

optimal values of these parameters for the best-fit to the

COMPAS distribution.

The KL divergence is used to determine the goodness

of fit. The KL divergence describes the divergence, or

deviation, between two probability distributions and is

given by the following equation [10]:

D(p(x), q(x)) =

∫ ∞
−∞

p(x) log

(
p(x)

q(x)

)
dx (3)

where p(x) and q(x) represent our distributions from pop-

ulation synthesis (COMPAS) and our phenomenological

model, respectively. The less the probability distribu-

tions deviate from one another, the closer to zero the KL

divergence becomes, implying that a small KL divergence

represents a better fit.

III. CONCLUSION

A. Results

Figure 7 shows the fits of our phenomenological models

to the binary black hole mass distribution from COM-

Phenomenological Power law

Parameters model model

α 1.05 0.38

β 54.78 70.16

mmax 0.89 2.10

mmin 0.55 0

λ 15.62 35

mpp 3.50 1

σpp 3.73 0

δm 8.77 0

TABLE I. Best-fit parameters for the phenomenologi-

cal and power law models. The fixed parameters are in

bold. Note that these parameters were not bounded and may

not be consistent with the astrophysical limits understood by

current observational data and theoretical predictions of pul-

sational pair-instability supernovae and population synthesis

modeling.

PAS. In blue is the COMPAS distribution, in orange is

our model motivated by pulsational pair-instability su-

pernovae, and in green is the power law fit. Visually, we

can see that the orange curve appears to represent the

mass distribution very well, whereas the green curve fails

to do so. This is also evident by the KL divergences; the

pulsational pair-instability supernovae fit and power law

fit have KL divergences of 0.05 and 0.41, respectively.

The best-fit parameter values are listed in Table III A.

Physically, however, the phenomenological model does

not describe the distribution anticipated. The parame-

ters that allow for the model to fit the peak at around

15 solar masses were intended to describe the theoretical

pile-up of black holes at approximately 35 solar masses

due to pulsational pair-instability supernovae. It is clear

that there is no evidence of this pile-up in the binary

black hole mass distribution from COMPAS; but, there

is an abundance of black holes around 15 solar masses due

to the treatment of mass transfer stability in the COM-

PAS code. Therefore, the parameters fit to this peak

instead.

In conclusion, the phenomenological model developed

by Talbot and Thrane [3] is a good description of the

binary black hole primary mass distribution produced by

the population synthesis code COMPAS. A simple power

law does not provide a good representation.
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B. Future Work

There are many ways to expand this research. In the

analysis presented here, the parameters of the models

were not bounded, meaning that the best-fit parameters

may not be consistent with the astrophysical limits un-

derstood by current observational data and theoretical

predictions of pulsational pair-instability supernovae and

population synthesis modeling. One should repeat the

analysis, but impose limits on the free parameters. Also,

one may extend the one-dimensional probability distri-

bution into a two-dimensional one in order to take into

account both primary and secondary black hole masses.

One may in addition explore other models and how well

they describe the mass distribution from COMPAS. The

analysis with the models presented here show the binary

black hole mass distribution as existing in the universe.

The analysis may be repeated for the binary black hole

mass distribution observable by LIGO, which can be done

by multiplying the distributions by an observational bias

factor before determining the best-fits. This would al-

low one to compare the models to real LIGO and Virgo

observations.

Lastly, it would be interesting to investigate how

changing parameters in COMPAS may affect the mass

distribution it outputs. One could change the specifica-

tions in the COMPAS code in an attempt to turn off the

special treatment of mass transfer stability in order to see

how the mass distributions would change, and then per-

form the analysis as described in this paper. One may

also experiment with the COMPAS specifications that

affect the treatment of pulsational pair-instability super-

novae, and adjust these parameters (within astrophysical

limits) in an attempt to induce a pile-up of black holes

from this phenomenon in order to see if it is possible to

ever see an abundance of black holes from pulsational

pair-instability supernovae, or if the amount is always

insignificant.
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