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Outline

-»-Cosmography with LISA
-&- Difficulties and how we might mitigate some of them

-»-Cosmography with ground_-based detectors

-» Measuring host redshifts from GW observations
alone

-» Cosmography from a population of observed sources
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Why are inspirals standard sirens?

-# Luminosity distance D can be inferred if one can measure:

-» the flux of radiation F and D L
-# absolute luminosity L L= A F
Schutz Nature 1986

-»- Flux of gravitational waves determined by amplitude of
gravitational waves measured by our detectors

-»- Absolute luminosity can be inferred from the ratefat
which the frequency of a source changes

- Notunlike Cephied variables except thatfis completely determined
by general relativity

-» Therefore compact binaries are self_calibrating standard
sirens
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Cosmography with LISA




Cosmography from a single source

-#- Gravitational wave (GW) observations alone cannot
measure the source’s redshift
-» This is certainly true for binary black holes
-# For binary neutron stars it might be a different story

-&- Ifitis possible to identify the host galaxy then
- cah measure the source’s redshift in addition to luminosity distance
- Anideal tool for cosmography and synergy between EM and GW

astronomy

-2 LISA can measure signals with a very high camplitude

signal-to_noise ratio (~1000-10,000,

-2 Should be possible to distinguish between different cosmological
models with a high_SNR single event
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eLLISA, z=0.5

eLISA SNRs
Inset: ET SNRs
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Basic idea

Diagram:
Ned Wright: 2011
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But ...

-» We really only measure

-# The luminosity distance (redshifted comoving distance,and redshifted
masses

Mobs — (1 + Z)Mintra Dy, = (1 + Z)D

-» Cannot measure the source’s redshift without EM identification

but this is difficult since GW detectors have poor sky localization

-» atleastthatis what we thought until recently

-» |fwe measure the source redshift we can deduce the intrinsic

mass of the source and resolve redshift-mass degeneracy

-» Distance measurementis corrupted by weak lensing

Holz and Hughes 2005; Van Den Broeck et al 2010
-» Correcting for or mitigating lensing would be important

-» Distance is strongly correlated with the unknown orbital

inclination of the source with respect to line_of_sight
Ajith and Bose 2009; Nissanke et al 2010
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Localization Question:
Mitigated by Higher Signal Harmonics

Dominant radiation at twice the orbital frequency but
radiation is emitted at all multiples of the orbital frequency
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Observed harmonics depend on the

inclination of the binary
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Higher Signal Harmonics: Spectrum
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Sighal Harmonics and Sky Localization 1

.»-Sky localization is improved by higher signal
harmonics that were neglected in earlier studies

-2 Why does sky localization improve due to signal
harmonics?

-» Observed harmonics depend strongly on the inclination
of the binary

- Inclination is strongly correlated with sky position

-» Harmonics help break distance-inclination and
inclination_sky position degeneracy
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Level of Improvement
SNR AlnD,  AQg  Aw

—9 —6
-# SNR doesn’t change much (1072  (107° str)

(mb mz) — (105, 106)Mo

-» Distance improves by a
factor of 2

-2 Angular resolution
improves by a factor of 10
or larger

-» Entries correspond to
different orientations

Table from
Arun et al: 2007

Friday, 23 May 2014




x 10

(0.1, 0.1) 10° Mg,

0.5 05

0

0
0 1000 -6

SNR

2000 -4 -2

log10 AQ / srad

Trias and Sintes

-5

0 5
log10 AQ / srad

0 0

-3 -2 -1 0O 1 -2 -1 0 -15 -1 -05 0 0.5
log10 AD /D log10 AB log10 Ac

1.5

2

’

0.5 1

0 0

-05 0 05 1 1.5 -5 -4 -3 -5 -4 -3 -2 -1
log10 At /sec log10 A cm / cm log10 A /p

Friday, 23 May

2014




<107 (01. 1 : 1 ) 1 06 M@ . Triés and Sintes

4 1
0.5 0.5
0 0
0 500 1000 -5 4 -3 -2 -1 -5 0 5
SNR log10 AQ / srad log10 AQ / srad
3 3

0 0
-2 0 2 -15-1-05 0 05 -15 -1 -05 0 0.5
log10 AD /D log10 AP log10 Ac
3
2
1
0 0
1 2 -45 -4 -35 -3 -25 -3 -2 -1 0
log10 At /sec log10 A cm / cm log10Ap/p

Friday, 23 May 2014




Addressing Weak Lensing

Correct for weak lensing by mapping the sky in the direction
of the source AND assume LISA will see many sources
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Distance Measurement: Dominated by Lensing
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Lensing correction: Simulation with a population
Shapiro et al 2010 Petiteau, Babak, Sesana: 2011

Friday, 23 May 2014



Mitigating Lensing: Safety in Numbers

-» |f LISA detects ~
30 events weak
lensing might
be mitigated

-»- Use the original
Schutz idea of
not depending
on EM
identification
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Petiteau, Babak, Sesana: 2011
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Posteriors on w: Two Different Realisations
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Cosmography with Ground-Based Detectors

20

Friday, 23 May 2014




Advanced LIGO Distance Reach to Binary
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Hubble Constant from Advanced Detectors 22
Assuming short_hard—_GRBs are binary neutron stars

PN 4 AL ViLLU/L WMbLLL\JLLU\J\A UJ w ANV UL \J 4 A e A Lulo 4L AU UVALLAWD .LWU\_/’

we find that one year of observation should be enough
to measure Hy to an accuracy of ~ 1% if SHBs are dom-
inated by beamed NS-BH binaries using the “full” net-
work of LIGO, Virgo, AIGO, and LCGT—admittedly,
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Hubble Constant from Advanced Detectors
without EM counterparts

25 events:

H, = 69 £ 3 km s7*Mpc (~4% at 95% confidence)
50 events:

H, =69 + 2 km s *Mpc (~3% at 95% confidence)
WMAP7+BAO+Snla (Komatsu et al.,2011):

H =70.2 £ 1.4 km s Mpc (~2% at 68%
confidence)

Del Pozzo, 2011
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ET Distance Reach to Coalescing Binaries
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ET:- Measuring Dark Energy and Dark Matter °°

-» ET will observe 100’s of binary neutron stars and GRB
associations each year

-»- GRBs could give the host location and red_shift, GW
observation provides D,

Class. Quantum Grav. 27 (2010) 215006 SOThYO pra kash et al 2010
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Measuring w and its variation with z

Baskaran, Van Den Broeck, Zhao, Li, 2011

1y W) = Dae/pae = wo + waz/(1+ 2)

—— BAO+CMB |
—— SNIa+CMB ]|
—— GW+CMB
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GW cosmography without EM counterparts

-» Measure redshift from gravitational wave observations alone
-» Use a population of sources to statistically infer cosmological
parameters

Friday, 23 May 2014



Messenger_-Read Method. 29

Make use of the post_Newtonian Tidal Term
K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A.

Sundararajan, Phys. Rev. D, 71, 084008 (2005), arXiv:gr-
qc/0411146.

Prp(f) = 2nfte = pe = 5 128nx5/2 Z !

T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D, 81, 123016 (2010), arXiv:0911.3535 [astro-ph.HE].

: 34, 24 11 >/2
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Measurement 1 ;
accuracy of
source redshift

N
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N
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102 . ,
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Messenger and Read, PRL, 2011 redshift z
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; ; . : 31
Host redshifts from gravitational wave observations
Host-galaxy redshifts from gravitational-wave observations of binary neutron star mergers
C. Messenger,! Kentaro Takami,>? Sarah Gossan,* Luciano Rezzolla,>? and B. S. Sathyaprakash’
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Binary Neutron Star GW Spectrum — post Merger >
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Measurement Accuracies of Char. Frequencies
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How well can we measure z?
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Hubble without the Hubble:
Cosmology using advanced gravitational-wave detectors alone

Stephen R. Taylor*
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Jonathan R. Gair'
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Ilya Mandel?
NSF Astronomy and Astrophysics Postdoctoral Fellow,
MIT Kavli Institute, Cambridge, MA 02139; and

School of Physics and Astronomy, Unwversity of Birmingham, FEdgbaston, Birmingham, B15 2TT
(Dated: January 31, 2012)

Cosmology with the lights off: Standard sirens in the Einstein Telescope era

Stephen R. Taylor* and Jonathan R. Gairf
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK
(Dated: July 6, 2012)
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Cosmology without EM Counterparts

-g- Distribution of Chirp Mass

M ~ N (g, 02)7
e =~ 2(0.25)3 P uns, 0 ~ v2(0.25)% Pong,
UNS € [1.0, 1.5]M@, ONS € [0,0.S]M@

w(a) = wy + we(l —a),

w(z):wo—l—wc,,(ljZ).

Taylor, Gair 2012
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Measuring dark energy EoS and its  °’

variation with redshift

-1.4 -1.2 —1 -0.8 -0.6
0 Taylor, Gair 2012
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Conclusions

-» LISA observations alone could measure
cosmological parameters, but . ..

-»- A lot depends on the true event rate

-» Also, will it really be possible to correct for weak lensing

-» Measurement errors achieved in the end are not really
comparable to what can be done by other means

-»-Ground-based detectors are in a good shape
for cosmography

-» A population of sources helps mitigate weak lensing

-» Statistical approaches work pretty well

38
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Determining the Large Scale Structure
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