

$Lisa Path finder \ \mu - Thruster \ Characterization \\ {\sf E.Plagnol(APC/Paris)}$

- The μ-thrusters are among the most important/critical components of LISAPathfinder/eLISA.
- They allow the S/C to follow the test masses in Drag -Free flight, correcting for external forces that apply to the S/C, e.g. solar winds. They also take care of the Attitude Control of the S/C.
- LPF has two kinds of μ -thrusters : cold gas (ESA) and colloidal (NASA).
- The purpose of this presentation is to expose a possible strategy to characterize the performances of the μ -thruster.
- The characteristics of the thrusters that we are interested in are:
 - The amplitude gain
 - The amplitude noise
 - The "average" direction
 - The "flutter" (directional) noise
- Most of the examples given will correspond to the FEEP system as data for the Cold Gas system are not yet available.
- *The general idea behind the strategy presented is due to Walter Fichter and coll. (IFR, Stuttgart)*

µ-Thruster Characterization

µ-Thruster Characterization

μ-Thruster Characterization

- LISAPathfinder was originally set up with 12 FEEP thrusters
 - Their "orientation" allowed to move the S/C in 6 degrees of freedom:
 - translation along ±X, ±Y and ±Z and rotation around X,Y and Z
- Because of development issues, they are now replaced by 6 cold-gas thruster whose geometry allow to apply translation along ±X, ±Y but only +Z and rotation around X, Y and Z
 - This set-up uses the solar pressure (\sim -20 μ N) on the -Z direction to allow for forces along the 6 degrees of freedom.
- Note that as the thruster may only apply a "positive force", they are permanently activated with a DC level (a few μ Newtons) yielding a total zero force/torque so that all possible movement of the S/C are allowed.

- In LPF, the measurement of the position of TM1 is measured (optically or by capacitive sensors) with respect to the S/C.
- The movement of TM1 therefore reflects the movement of the S/C (to within the small stiffness effects),.
- Observing the "acceleration" of TM1, taking into account the commanded forces, is therefore equivalent to measuring the acceleration/force applied to the S/C.
- The measurement of the acceleration of TM1 will therefore be used to characterize the μ -thruster system.

	FEEPs	Cold Gas
Thrust Range	1 - 150 μN	2 - 100 μN
Thrust Resolution	< 0.1 <i>µ</i> N	0.3 <i>µ</i> N
Thrust Noise	0.1 <i>µ</i> N/Hz	0.2 μN/Hz
Flutter Noise	< degree ?	< degree ?
Thruster command Frequency	10 Hz	10 Hz

The geometry of the thruster system is such that: **FEEPS** (12 thrusters) :

For 1 μ N on each thruster, i.e. 12 μ N total:

- + 3.75 μN is project on X
- + 3.75 μN is project on Y
- 4.5 μ N is project on Z

ColdGas (6 thrusters), i.e. 6 µN total :

For 1 μ N on each thruster :

- + 2.26 μN is project on X
- + 2.26 μN is project on Y
- 1.48 µN is project on Z

Solar Pressure

Fx, Fy, Fz = $5.84 \cdot 10^{-7}$ N, $5.84 \cdot 10^{-7}$ N, $-1.98 \cdot 10^{-5}$ N

µ-Thruster Characterization : "Colored" Noise study

0L -4

-3

-2

-1

0

Force on Z axis (N TBC)

1

x 10⁻⁶

µ-Thruster Characterization : "Colored" Noise study

10

x 10⁻⁶

2

-1

-3

-2

0

Force on Z axis (N TBC)

The noise on thruster N°5 has been increased by a factor 5 : 0.5 μ N

- The direction of a given thruster can be obtained by actuating it with a given sine wave of given frequency and amplitude:
 - force = $5*\sin(2\pi ft) + 8 \mu N$ f $\approx 1 \text{ mHz}$
- Analyzing the movement of the spacecraft, the direction of thrust can be extracted (24h).
- Choosing different frequencies ($\Delta f = 2 \ 10^{-4} \ Hz$)for each thruster, the actuations can be performed simultaneously.

• Typical direction errors are $\approx 0.1 - 0.4^{\circ}$

Thruster Nb	1	2	3	4	5	6	7	8	9	10	11	12
	White Noise											
Direction Error (°)	0.31	0.39	0.23	0.13	0.22	0.19	0.13	0.11	0.15	0.12	0.15	0.11
Amplitude ratio to input	1.14	1.13	1.15	1.14	1.13	1.12	1.11	1.11	1.11	1.12	1.14	1.14
	Standard Noise											
Direction Error (°)	0.29	0.35	0.25	0.11	0.20	0.21	0.20	0.15	0.18	0.12	0.10	0.09
Amplitude ratio to input	1.13	1.13	1.15	1.14	1.13	1.12	1.12	1.11	1.11	1.12	1.15	1.14

May 2014

- The direction of a given thruster can be obtained by actuating it with a given sine wave of given frequency and amplitude:
 - force = $5*\sin(2\pi ft) + 8 \mu N$ f $\approx 1 \text{ mHz}$
- Analyzing the movement of the spacecraft, the direction of thrust can be extracted (24h).
- Choosing different frequencies ($\Delta f = 2 \ 10^{-4} \ Hz$)for each thruster, the actuations can be performed simultaneously.

• Typical direction errors are $\approx 0.1 - 0.4^{\circ}$

Thruster Nb	1	2	3	4	5	6	7	8	9	10	11	12
	White Noise											
Direction Error (°)	0.31	0.39	0.23	0.13	0.22	0.19	0.13	0.11	0.15	0.12	0.15	0.11
Amplitude ratio to input	1.14	1.13	1.15	1.14	1.13	1.12	1.11	1.11	1.11	1.12	1.14	1.14
	Standard Noise											
Direction Error (°)	0.29	0.35	0.25	0.11	0.20	0.21	0.20	0.15	0.18	0.12	0.10	0.09
Amplitude ratio to input	1.13	1.13	1.15	1.14	1.13	1.12	1.12	1.11	1.11	1.12	1.15	1.14

In these calculations, all instrumental noises are included

May 2014

- Based on studies with an LPF/SSM model:
 - The overall noise of system can be measured,
 - An excess of noise (x5) on a given thruster can be detected and measured,
 - By applying a sinusoidal force on each thruster (simultaneously), the direction of each thruster can be measured to a fraction of a degree.
 - Such an investigation takes of the order of 24h.
 - The measurement of the "flutter" noise is not yet implemented.
 - We have not looked at the torques...
 - There is much to improve in the analysis part.
- We have checked that this works also for the Cold Gas SSM simulator
- We are waiting for the ESA/AirBus D&S simulator data to validate this investigation in order to use it during the mission.

