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Introduction to EMRI modelling
Extreme-Mass-Ratio inspirals consist of a Stellar-mass 
Compact Object (SCO)

m ⇥ 1� 30 M�

orbiting a Massive Black Hole (MBH) at a galactic center 

M• ⇥ 105 � 107 M�

in the regime where the dynamics is driven by GW emission. 
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Extreme-Mass-Ratio inspirals consist of a Stellar-mass 
Compact Object (SCO)

m ⇥ 1� 30 M�

orbiting a Massive Black Hole (MBH) at a galactic center 

M• ⇥ 105 � 107 M�

in the regime where the dynamics is driven by GW emission. 

They are one of the main sources of GWs for eLISA.  The 
mass ratios of interest are in the range:

µ =
m

M•
⇥ 10�3 � 10�7
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Introduction to EMRI modelling
 EMRI observations can potentially lead to new discoveries 
in Astrophysics (Dynamics around galactic nuclei, 
distribution of masses and spins of MBHs, etc.), in 
Cosmology (Constraints on galaxy formation models, 
measurements of cosmological parameters, etc.), and in 
Fundamental Physics (tests of the no-hair theorem and 
theories of gravity).
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Introduction to EMRI modelling
 EMRI observations can potentially lead to new discoveries 
in Astrophysics (Dynamics around galactic nuclei, 
distribution of masses and spins of MBHs, etc.), in 
Cosmology (Constraints on galaxy formation models, 
measurements of cosmological parameters, etc.), and in 
Fundamental Physics (tests of the no-hair theorem and 
theories of gravity).

Given that EMRI signals will be buried in the detector data 
stream it is very important to have very precise gravitational 
waveform templates.  

For a space-based detector like eLISA, signals 
corresponding to the last year before plunge may contain 
more than 10^5 cycles.
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EMRIs and the Self-Force
  Due to the extreme mass ratios we can describe the system 
accurately using BH Perturbation Theory: The spacetime is 
the MBH spacetime (Kerr metric) with perturbations induced 
by the SCO.

g↵� = gMBH
↵� + hµ⌫
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 When we treat the SCO as a point-like object the deviations 
from geodesic motion can be described by the action of a 
local force, the self-force.  The equation of motion for the SCO 
is the so-called the MiSaTaQuWa equation [Mino, Sasaki & 
Tanaka (1997); Quinn & Wald (1997)]:

BH

SCO

Fµ

F↵ = �m

2
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At present, the (first order) self-force has been computed for 
all cases in the case of a non-rotating MBH (Barack & 
collaborators) both in the time and frequency domains.

EMRIs and the Self-Force

It has been done in the so-called Lorenz gauge:

 ↵� = h↵� � 1

2
g↵�g

⇢�h⇢�

 ↵�
;� = 0

Barack & Sago, PRD 75 064021 (2007)

Sago, Barack & Detweiler, PRD 78 124024 (2008)

Barack & Sago, PRD 81 084021 (2010)

Akcay, Warburton & Barack, PRD 88 104009 (2013)
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The regularization of the retarded (full) metric perturbations 
is done from a multipolar expansion:

EMRIs and the Self-Force

F↵
=

1X

`=0

F↵
` (This diverges at the particle location)
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The regularization of the retarded (full) metric perturbations 
is done from a multipolar expansion:

To obtain the regularized self-force we need to substract a 
singular piece that can be obtained analytically:

EMRIs and the Self-Force

F↵
=

1X

`=0

F↵
` (This diverges at the particle location)

F self,↵
` = F↵

` � F S,↵
`

Computed analytically  
in the Lorenz gaugeComputed numerically  

in the Lorenz gauge
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Structure of the Singular “force”:

EMRIs and the Self-Force
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Structure of the Singular “force”:

So, all what remains is to compute the different harmonics of 
the retarded field in an efficient and precise way.

EMRIs and the Self-Force
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The equations for each harmonic of the metric perturbations 
in the Lorenz gauge are coupled, in contrast with the Regge-
Wheeler gauge, where they decouple:  We have master 
wave-type equations (Regge-Wheeler & Zerilli) and all the 
metric perturbations can be reconstructed from the solution 
of the master equations.

 Self-Force in the Regge-Wheeler gauge

h`m
↵� =

 
p`mab Y `m q`ma Y `m

A + h`m
a S`m

A

⇤ r2
�
K`m Y `m

AB +G`m Z`m
AB

�
+ h`m

2 S`m
AB

!
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 Self-Force in the Regge-Wheeler gauge

QUESTION:Can we compute the self-force in the 
Regge-Wheeler gauge? 
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 Self-Force in the Regge-Wheeler gauge

QUESTION:Can we compute the self-force in the 
Regge-Wheeler gauge? 

CANONICAL	  ANSWER:No, because the Regge-
Wheeler gauge is a singular gauge.
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 Self-Force in the Regge-Wheeler gauge

Main Conclusions:

FGauge X,↵
self

= FGauge X,↵
full

� FLorenz Gauge,↵
S
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 Self-Force in the Regge-Wheeler gauge

Main Conclusions:

This is true provided the self-force admits a definite finite value in the 
Gauge X.

FGauge X,↵
self

= FGauge X,↵
full

� FLorenz Gauge,↵
S

Since this happens when X=Lorenz, the condition is that the 
transformation from the Lorenz gauge to the Gauge X would yield a 
regular finite value for the self-force difference.
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 Self-Force in the Regge-Wheeler gauge
Gauge transformation for metric perturbations:

hGauge X

↵� = hLorenz Gauge

↵� + ⇠↵;� + ⇠�;↵



LISA Symposium X, Gainesville, Florida. 20 May 2014 13

 Self-Force in the Regge-Wheeler gauge
Gauge transformation for metric perturbations:

hGauge X

↵� = hLorenz Gauge

↵� + ⇠↵;� + ⇠�;↵

A basic analysis shows that:



LISA Symposium X, Gainesville, Florida. 20 May 2014 13

 Self-Force in the Regge-Wheeler gauge
Gauge transformation for metric perturbations:

Only for Radial trajectories in the Regge Wheeler gauge can we obtain a 
finite value for the self-force.

hGauge X

↵� = hLorenz Gauge

↵� + ⇠↵;� + ⇠�;↵

A basic analysis shows that:



LISA Symposium X, Gainesville, Florida. 20 May 2014 13

 Self-Force in the Regge-Wheeler gauge
Gauge transformation for metric perturbations:

Only for Radial trajectories in the Regge Wheeler gauge can we obtain a 
finite value for the self-force.

We cannot get a finite value for the self-force for any type of trajectory in 
the Radiation gauge.

hGauge X

↵� = hLorenz Gauge

↵� + ⇠↵;� + ⇠�;↵

A basic analysis shows that:



LISA Symposium X, Gainesville, Florida. 20 May 2014 13

 Self-Force in the Regge-Wheeler gauge
Gauge transformation for metric perturbations:

Only for Radial trajectories in the Regge Wheeler gauge can we obtain a 
finite value for the self-force.

We cannot get a finite value for the self-force for any type of trajectory in 
the Radiation gauge.

hGauge X

↵� = hLorenz Gauge

↵� + ⇠↵;� + ⇠�;↵

A basic analysis shows that:

Can	  we	  get	  around	  this?



LISA Symposium X, Gainesville, Florida. 20 May 2014 13

 Self-Force in the Regge-Wheeler gauge
Gauge transformation for metric perturbations:

Only for Radial trajectories in the Regge Wheeler gauge can we obtain a 
finite value for the self-force.

We cannot get a finite value for the self-force for any type of trajectory in 
the Radiation gauge.

hGauge X

↵� = hLorenz Gauge

↵� + ⇠↵;� + ⇠�;↵

Key QuantityA basic analysis shows that:

Can	  we	  get	  around	  this?
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 The Particle without Particle scheme

Radial Direction

Time
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 The Particle without Particle scheme

Radial Direction

Time

It divides the spacetime  
into two disjoint regions

Particle’s spacetime  
trajectory

rp(t)
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 The Particle without Particle scheme

Radial Direction

Time

Region - Region +

Particle’s spacetime  
trajectory

rp(t)

h`m
↵� (t, r) = h`m,(+)

↵� (t, r)⇥
�
r � rp(t)

�
+ h`m,(�)

↵� (t, r)⇥
�
rp(t)� r

�

h`m,(+)
↵� (t, r)h`m,(�)

↵� (t, r)
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 The Particle without Particle scheme

Radial Direction

Time

Region - Region +

Particle’s spacetime  
trajectory

rp(t)

h`m,(+)
↵� (t, r)h`m,(�)

↵� (t, r)

E [h`m
↵� ](t, r) = T `m

↵� (t, r)

E [h`m,(+)
↵� ](t, r) = 0

E [h`m,(�)
↵� ](t, r) = 0

⇥
h`m
↵�

⇤
(t) = T̂↵�(t)Jumps

Finite  
Quantities

⇥
@⇢h

`m
↵�

⇤
(t) = T̂⇢↵�(t)
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 The Particle without Particle scheme
It avoids the presence of singularities in our computational 
domain and also the need for introducing an artificial 
(spatial) scale in the problem.

Cañizares & CFS, CQG 28 134011 (2011)
Jaramillo, CFS & Cañizares, PRD 83 061503 (2011)
Cañizares, CFS & Jaramillo, PRD 82 044023 (2010)

Cañizares & CFS, PRD 79 084020 (2009)
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 The Particle without Particle scheme
It avoids the presence of singularities in our computational 
domain and also the need for introducing an artificial 
(spatial) scale in the problem.

As a consequence we are left with homogeneous wave-type 
equations (i.e. without distributional source terms) at the 
interiors of the two regions.  Then, we obtain smooth 
solutions in both regions.  

Cañizares & CFS, CQG 28 134011 (2011)
Jaramillo, CFS & Cañizares, PRD 83 061503 (2011)
Cañizares, CFS & Jaramillo, PRD 82 044023 (2010)

Cañizares & CFS, PRD 79 084020 (2009)
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 The Particle without Particle scheme
From the Lorenz Gauge to the Regge-Wheeler Gauge:
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 The Particle without Particle scheme
From the Lorenz Gauge to the Regge-Wheeler Gauge:

Linearized Einstein equations in the Lorenz Gauge + Lorenz Gauge:
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Zero only for 

radial trajectories

Why?
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 The Particle without Particle scheme
From the Lorenz Gauge to the Regge-Wheeler Gauge:

Because we assumed that the Regge-Wheeler is a regular gauge  
that admits the regular decomposition:

hRW
↵� = hRW,(+)
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 The Particle without Particle scheme
From the Lorenz Gauge to the Regge-Wheeler Gauge:

Because we assumed that the Regge-Wheeler is a regular gauge  
that admits the regular decomposition:

But the gauge transformation equations dictate a different structure 
for the metric perturbations in the Regge-Wheeler Gauge:
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Because we assumed that the Regge-Wheeler is a regular gauge  
that admits the regular decomposition:

But the gauge transformation equations dictate a different structure 
for the metric perturbations in the Regge-Wheeler Gauge:
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And this induces the Dirac delta terms that make the previous 
equation consistent.  In this way we have controlled the singularities 
of the problem so that we finally can obtain a finite value for the 
self-force.
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 The Particle without Particle scheme
From the Lorenz Gauge to the Regge-Wheeler Gauge:

In summary, the Particle-without-Particle formulation provides a 
clean method to control the singularities that appear in the gauge 
transformation and, as a consequence, provides a well-defined, 
finite, self-force (from both regions) in the Regge-Wheeler gauge.

Time

Radial  
Direction
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 Present and Future prospects
Numerical Implementation: The Particle-without-Particle 
formalism has been implemented successfully for the scalar 
case with pseudospectral collocation methods (with spectral 
convergence). We are extending it for the gravitational case 
in the Regge-Wheeler gauge.
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Extension to Kerr: uncertain in the time domain (logarithmic 
singularities).  Good Prospects in the frequency domain 
(adapting the method of extended solutions).  


