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= Extreme-Mass-Ratio inspirals consist of a Stellar-mass
Compact Object (SCO)

orbiting a Massive Black Hole (MBH) at a galactic center

in the regime where the dynamics is driven by GW emission.
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= Extreme-Mass-Ratio inspirals consist of a Stellar-mass
Compact Object (SCO)

orbiting a Massive Black Hole (MBH) at a galactic center

in the regime where the dynamics is driven by GW emission.

= They are one of the main sources of GWSs for eLISA. The
mass ratios of interest are in the range:
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= EMRI observations can potentially lead to new discoveries
iIn Astrophysics (Dynamics around galactic nuclel,
distribution of masses and spins of MBHSs, etc.), in
Cosmology (Constraints on galaxy formation models,
measurements of cosmological parameters, etc.), and in

Fundamental Physics (tests of the no-hair theorem and
theories of gravity).
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distribution of masses and spins of MBHSs, etc.), in
Cosmology (Constraints on galaxy formation models,
measurements of cosmological parameters, etc.), and in

Fundamental Physics (tests of the no-hair theorem and
theories of gravity).

= Given that EMRI signals will be buried in the detector data

stream It Is very important to have very precise gravitational
waveform templates.

= For a space-based detector like eLISA, signals

corresponding to the last year before plunge may contain
more than 10”5 cycles.
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= Due to the extreme mass ratios we can describe the system
accurately using BH Perturbation Theory: The spacetime is

the MBH spacetime (Kerr metric) with perturbations induced
by the SCO.
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EMRIs and the Self-Force
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EMRIs and the Self-Force
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= At present, the (first order) self-force has been computed for
all cases in the case of a non-rotating MBH (Barack &
collaborators) both in the time and frequency domains.

Barack & Sago, PRD 75 064021 (2007)
Sago, Barack & Detweiler, PRD 78 124024 (2008)

Barack & Sago, PRD 81 084021 (2010)
Akcay, Warburton & Barack, PRD 88 104009 (2013)

= |t has been done in the so-called Lorenz gauge:
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= The regularization of the retarded (full) metric perturbations
Is done from a multipolar expansion:
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= The regularization of the retarded (full) metric perturbations
Is done from a multipolar expansion:

= To obtain the regularized self-force we need to substract a
singular piece that can be obtained analytically:
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= Structure of the Singular “force”
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= Structure of the Singular “force”
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= Structure of the Singular “force”
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EMRIs and the Self-Force
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= Structure of the Singular “force”
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= S0, all what remains is to compute the different harmonics of
the retarded field in an efficient and precise way.
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= The equations for each harmonic of the metric perturbations
in the Lorenz gauge are coupled, in contrast with the Regge-
Wheeler gauge, where they decouple: We have master
wave-type equations (Regge-Wheeler & Zerilli) and all the

metric perturbations can be reconstructed from the solution
of the master equations.
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= QUESTION: Can we compute the self-force in the
Regge-Wheeler gauge”?
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= QUESTION:Can we compute the self-force in the
Regge-Wheeler gauge?

= CANONICAL ANSWER:No, because the Regge-
Wheeler gauge is a singular gauge.
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Self-Force in the Regge-Wheeler gauge

PHYSICAL REVIEW D, VOLUME 64, 124003

Gravitational self-force and gauge transformations

Leor Barack
Albert-Einstein-Institut, Max-Planck-Institut fur Gravitationsphysik, Am Muhlenberg 1, D-14476 Golm, Germany

Amos Ori
Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel

(Received 16 July 2001; published 31 October 2001)

FGauge X,a0

Gauge X, FLorenz Gauge,«
self — * full -

S



Self-Force in the Regge-Wheeler gauge

PHYSICAL REVIEW D, VOLUME 64, 124003

Gravitational self-force and gauge transformations

Leor Barack
Albert-Einstein-Institut, Max-Planck-Institut fur Gravitationsphysik, Am Muhlenberg 1, D-14476 Golm, Germany

Amos Ori
Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel

(Received 16 July 2001; published 31 October 2001)

FGauge X,a0

Gauge X, FLorenz Gauge,«
self — * full -

S



Self-Force in the Regge-Wheeler gauge

PHYSICAL REVIEW D, VOLUME 64, 124003

Gravitational self-force and gauge transformations

Leor Barack
Albert-Einstein-Institut, Max-Planck-Institut fur Gravitationsphysik, Am Muhlenberg 1, D-14476 Golm, Germany

Amos Ori
Department of Physics, Technion—Israel Institute of Technology, Haifa 32000, Israel

(Received 16 July 2001; published 31 October 2001)

FGauge X,a¢

Gauge X, FLorenz Gauge,«
self — * full -

S



= Gauge transformation for metric perturbations:
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= Gauge transformation for metric perturbations:

= A basic analysis shows that:
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= Only for Radial trajectories in the Regge Wheeler gauge can we obtain a
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The Particle without Particle scheme

- Particle’s spacetime
trajectory

Time

It divides the spacetime
into two disjoint regions

"Radial Direction
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The Particle without Particle scheme

- Particle’s spacetime

Time trajectory
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The Particle without Particle scheme

- Particle’s spacetime

Time trajectory

" Radial Direction
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t,r) =0
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= |t avoids the presence of singularities in our computational
domain and also the need for introducing an artificial
(spatial) scale in the problem.

Canizares & CFS, CQG 28 134011 (2011)
Jaramillo, CFS & Canizares, PRD 83 061503 (2011)
Canizares, CFS & Jaramillo, PRD 82 044023 (2010)

Canizares & CFS, PRD 79 084020 (2009)
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= |t avoids the presence of singularities in our computational
domain and also the need for introducing an artificial
(spatial) scale in the problem.

= As a conseguence we are left with homogeneous wave-type
equations (i.e. without distributional source terms) at the
interiors of the two regions. Then, we obtain smooth
solutions in both regions.

Canizares & CFS, CQG 28 134011 (2011)
Jaramillo, CFS & Canizares, PRD 83 061503 (2011)
Canizares, CFS & Jaramillo, PRD 82 044023 (2010)

Canizares & CFS, PRD 79 084020 (2009)
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:

Inconsistency!
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:

Zero nly for
radial trajectories Inconsisfency!
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:

Zero nly for
radial trajectories Inconsisfency!

Why?
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:

hfgv — hfgv’(ﬂ@ (7‘ — frp(t)) + REW. (=) g (frp(t) — r)
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= From the Lorenz Gauge to the Regge-Wheeler Gauge:

hey = hfgv’(ﬂ@ (r—r,(t)) + hg[\;v,(—)@ (r,(t) — )

has = s+ Easp + Epia
£, = §((X ) © (fr — rp(t)) — fc(x_) © (frp(t) — r)
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The Particle without Particle scheme

Because we assumed that the Regge-Wheeler is a regular gauge
that admits the regular decomposition:

But the gauge transformation equations dictate a different structure
for the metric perturbations in the Regge-Wheeler Gauge:

And this induces the Dirac delta terms that make the previous
equation consistent. In this way we have controlled the singularities
of the problem so that we finally can obtain a finite value for the
self-force.



The Particle without Particle scheme

In summary, the Particle-without-Particle formulation provides a
clean method to control the singularities that appear in the gauge
transformation and, as a consequence, provides a well-defined,
finite, self-force (from both regions) in the Regge-Wheeler gauge.




The Particle without Particle scheme

In summary, the Particle-without-Particle formulation provides a
clean method to control the singularities that appear in the gauge
transformation and, as a consequence, provides a well-defined,
finite, self-force (from both regions) in the Regge-Wheeler gauge.
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= Numerical Implementation: The Particle-without-Particle
formalism has been implemented successfully for the scalar
case with pseudospectral collocation methods (with spectral

convergence). We are extending it for the gravitational case
In the Regge-\Wheeler gauge.
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= Numerical Implementation: The Particle-without-Particle
formalism has been implemented successfully for the scalar
case with pseudospectral collocation methods (with spectral

convergence). We are extending it for the gravitational case
In the Regge-\Wheeler gauge.

= Analysis of other gauges: Radiation gauge, etc.

= Extension to Kerr: uncertain in the time domain (logarithmic

singularities). Good Prospects in the frequency domain
(adapting the method of extended solutions).
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