Links between instrument developments and science with Gravitational Waves :

the LISACode simulator & studies of robust data analysis and calibration methods

A. Petiteau (APC – University Paris Diderot)

LISASymposium - Gainesville, 22th May 2014

Link between instrument dev. & science with GW - A. Petiteau - LISASymposium 10 - 22/05/14

Situation

- Mission accepted: we need now to make it as best as possible.
- > Large developments and studies done for LISA and eLISA on:
 - Instrument developments and research on high level technologies.
 - Data analysis and science with gravitational waves.
- > BUT there is very little connections between these two aspects ...
- ➤ → developments of instrument, data analysis and studies of science efficiency of eLISA have to be consider COHERENTLY.
- > One example of potential problem:
 - periodicity and not stationarity of the noise that can mimic sources or at least, makes the matched filtering more complex for long standing GW sources.
 - High noise observed: instrument or stochastic background ?

First ideas for "connections" :

- Several kind of simulators:
 - How they compare ?
 - Are they complementary ?
 - Hardware versus numeric
- Include realistic noises in MeLDC (already plan)
- Connections between IOT (Instrument Operation Team) team and DPC (Data Processing Centre) ?
- Set up calibration procedures ...
- How GW sources could be use to calibrate the instruments ?

L

Calibration ...

- > Use verification binaries to calibrate the noise level ...
- > Define calibration procedures :
 - Example: Stochastic background from phase transition, cosmic strings: can we really differentiate it from instrumental noise, in particular if it is high and "cover" other GW sources ?
 - \rightarrow Can we do something on instrument to identify the source of this "noise".
 - \rightarrow Some studies started ...

Data analysis

- > DA of "known" sources with well known waveforms:
 - Mainly matched filtering.
- > DA of "known" sources with leak of understanding on waveforms:
 - DA using generic waveforms,
 - Robust methods (wavelets, ...).
- > DA of unknown sources
 - Robust methods
- DA noises (part of the task of Instr. Op. Team):
 - Robust methods ?

 \rightarrow Robust methods and methods based on "generic" waveforms need to be studied.

5 Link between instrument dev. & science with GW - A. Petiteau - LISASymposium 10 - 22/05/

DEROT

LISACode

- Scientific simulator for
 LISA type mission (C++)
- GW modeling, noises modeling, transfer functions, orbits, clocks, TDI, sensitivity generator, simple MCMC, ...
- > Used in MLDC,
- Used for NGO/eLISA design,
- Flexible,

EROT

L

LISA On Table

- Electro-optical simulator for eLISA:
 - optic: interferometry.
 - electronic: delay, noise generation.
 - noise injection through AOM.
 - Hardware test of TDI.
 - \rightarrow Connection with LISACode:
 - LISACode as noises generator for the LOT.
 - LOT provides noise time series to LISACode.

Pierre Gruning's talk

eLISA Noises Simulator

- State Space Model Simulator :
 - eLISA orbits,
 - Attitude controllers,
 - Test mass control,
 - Actuation and sensing noises,

 $\rightarrow \quad \text{Detailed simulations} \\ \text{providing inputs to LISACode} \\ \text{in the form of time series and} \\ \text{transfer functions.} \\ \end{cases}$

Henri Inchauspe's talk

Link between instrument dev. & science with GW - A. Petiteau - LISASymposium 10 - 22/05/14 12

Data Processing Centres

- > LISAPathfinder Complementary Data Centre : François Arago Data Centre:
 - Offline analysis for the LPF mission
 - Extensive computation using the FACe cluster, ...

 \rightarrow direct injections LISAPathfinder measurements (extrapolated for eLISA)

- » eLISA Data Processing Centre in France :
 - CNES Phase 0 conducted in 2013 : feasibility, cost, studies of different computing strategies, ...
 - Core of DPC will start to be build soon & can support some of the eLISA activities.
 - \rightarrow run simulation for noises and GW astrophysics
 - \rightarrow test data analysis

ARIS BIDEROT

Mock eLISA Data Challenge & Data Analysis

- A large number of development already done within the context of the MLDC (2005-2012):
 - Most part of the methods based on matched filtering
 - Limitations : limited number of sources, very simple noise
- Future: Mock eLISA Data Challenge (MeLDC)
 - \rightarrow Developments needed :
 - Matched filtering methods considering realistic noises and large number of GW sources,
 - Methods based on generic waveform,
 - Development robust methods.

Conclusion

- We need coherent developments on instrument, on data analysis and on science with GW.
- Calibration methods have to be defined.
- > Data analysis for instruments and GW signal.
- Studies start at APC with LISACode simulator as a central connector between :
 - LISA On Table,
 - eLISA noises simulator,
 - LISAPathfinder Complementary Data Centre,
 - eLISA Data Processing Centre,
 - Data Analysis developments and MeLDC.

Thank you !

17 Link between instrument dev. & science with GW - A. Petiteau - LISASymposium 10 - 22/05/14

