Links between instrument developments and science with Gravitational Waves:

the LISACode simulator & studies of robust data analysis and calibration methods

A. Petiteau (APC – University Paris Diderot)

LISASymposium - Gainesville, 22th May 2014
Situation

➢ Mission accepted: we need now to make it as best as possible.

➢ Large developments and studies done for LISA and eLISA on:
 • Instrument developments and research on high level technologies.
 • Data analysis and science with gravitational waves.

➢ BUT there is very little connections between these two aspects ...

➢ → developments of instrument, data analysis and studies of science efficiency of eLISA have to be consider COHERENTLY.

➢ One example of potential problem:
 • periodicity and not stationarity of the noise that can mimic sources or at least, makes the matched filtering more complex for long standing GW sources.
 • High noise observed: instrument or stochastic background ?
First ideas for “connections”:

- Several kind of simulators:
 - How they compare?
 - Are they complementary?
 - Hardware versus numeric

- Include realistic noises in MeLDC (already plan)

- Connections between IOT (Instrument Operation Team) team and DPC (Data Processing Centre)?

- Set up calibration procedures ...

- How GW sources could be use to calibrate the instruments?

- ...

Link between instrument dev. & science with GW - A. Petiteau - LISASymposium 10 - 22/05/14
Calibration ...

➢ Use verification binaries to calibrate the noise level ...

➢ Define calibration procedures:
 • Example: Stochastic background from phase transition, cosmic strings: can we really differentiate it from instrumental noise, in particular if it is high and “cover” other GW sources?
 → Can we do something on instrument to identify the source of this “noise”.

→ Some studies started ...
Data analysis

➢ DA of “known” sources with well known waveforms:
 • Mainly matched filtering.

➢ DA of “known” sources with leak of understanding on waveforms:
 • DA using generic waveforms,
 • Robust methods (wavelets, ...).

➢ DA of unknown sources
 • Robust methods

➢ DA noises (part of the task of Instr. Op. Team):
 • Robust methods ?

→ Robust methods and methods based on “generic” waveforms need to be studied.
LISACode

- Scientific simulator for LISA type mission (C++)
- GW modeling, noises modeling, transfer functions, orbits, clocks, TDI, sensitivity generator, simple MCMC, ...
- Used in MLDC,
- Used for NGO/eLISA design,
- Flexible,
- ...

6 Link between instrument dev. & science with GW - A. Petiteau - LISA Symposium 10 - 22/05/14
Studies started at APC

- eLISA noises simulator
- LOT
- LISAPathfinder complementary data centre
- Data analysis and MeLDC
- eLISA Data Processing Centre
- LISACode
Studies started at APC

- Data analysis and MeLDC
- eLISA Data Processing Centre
- eLISA noises simulator
- LOT
- LISAPathfinder complementary data centre

Link between instrument dev. & science with GW - A. Petiteau - LISASymposium 10 - 22/05/14
LISA On Table

- Electro-optical simulator for eLISA:
 - optic: interferometry.
 - electronic: delay, noise generation.
 - noise injection through AOM.
 - Hardware test of TDI.

→ Connection with LISACode:
 - LISACode as noises generator for the LOT.
 - LOT provides noise time series to LISACode.

Pierre Gruning's talk
Studies started at APC

- eLISA noises simulator
- LOT
- Data analysis and MeLDC
- eLISA Data Processing Centre
- LISAPathfinder complementary data centre
eLISA Noises Simulator

- State Space Model Simulator:
 - eLISA orbits,
 - Attitude controllers,
 - Test mass control,
 - Actuation and sensing noises,
 - ...

→ Detailed simulations providing inputs to LISACode in the form of time series and transfer functions.

Henri Inchauspé's talk
Studies started at APC

- eLISA noises simulator
- LOT
- Data analysis and MeLDC
- eLISA Data Processing Centre
- LISAPathfinder complementary data centre
Data Processing Centres

- LISAPathfinder Complementary Data Centre: François Arago Data Centre:
 - Offline analysis for the LPF mission
 - Extensive computation using the FACe cluster, ...
 → direct injections LISAPathfinder measurements (extrapolated for eLISA)

- eLISA Data Processing Centre in France:
 - CNES Phase 0 conducted in 2013: feasibility, cost, studies of different computing strategies, ...
 - Core of DPC will start to be build soon & can support some of the eLISA activities.
 → run simulation for noises and GW astrophysics
 → test data analysis
Studies started at APC

- eLISA noises simulator
- LOT
- eLISA Data Processing Centre
- LISAPathfinder complementary data centre
- Data analysis and MeLDC

Mock eLISA Data Challenge & Data Analysis

- A large number of development already done within the context of the MLDC (2005-2012):
 - Most part of the methods based on matched filtering
 - Limitations: limited number of sources, very simple noise

- Future: Mock eLISA Data Challenge (MeLDC)

 → Developments needed:
 - Matched filtering methods considering realistic noises and large number of GW sources,
 - Methods based on generic waveform,
 - Development robust methods.
Conclusion

➢ We need coherent developments on instrument, on data analysis and on science with GW.
➢ Calibration methods have to be defined.
➢ Data analysis for instruments and GW signal.
➢ Studies start at APC with LISACode simulator as a central connector between:
 • LISA On Table,
 • eLISA noises simulator,
 • LISAPathfinder Complementary Data Centre,
 • eLISA Data Processing Centre,
 • Data Analysis developments and MeLDC.
Thank you!