

Development of a Micro-Thruster Test Facility which fulfils the LISA requirements

Franz Georg Hey^{1,2}, A. Keller¹, J. Ulrich¹, C. Braxmaier^{3,4}, M. Tajmar², E. Fitzsimons¹, and D. Weise¹

¹ Airbus Defence and Space – Space Systems
² Technische Universität Dresden, ILR
³ Universität Bremen, ZARM
⁴ DLR Bremen, Institute of Space Systems
22th May 2014

Outline

- Overview Micro Thruster Test Facility
 - Vacuum Chamber
 - Thrust Balance
 - Plasma Diagnostics
- Actual status Micro-HEMP-T development
- Conclusion and Outlook

Micro Newton Thruster Test Facility

• Facility consists of:

- 1500 litre cubic vacuum chamber
 - → 1200 mm x 1200 mm x 880 mm (without doors)
 - → Two big 1200 mm x 1200 mm doors enabling good handling
- Pumps:
 - → Forestage pump: 20 litre/s
 - → Two turbo pumps: 1400 litre/s
 - → Cryo pump: 10000 litre/s
- Only viton sealings used
- With Cryo Pump
 - → Pressure without gas ballast 4e-7 mbar
 - → Pressure with gas ballast 1e-6 mbar
- Without Cryo Pump
 - \rightarrow Pressure without gas ballast 2e-6 mbar
 - \rightarrow Pressure with gas ballast 1e-5 mbar

Micro Newton Thruster Test Facility

• Facility consists of:

- ITEM support structure
 - \rightarrow Mounted on 4 optical isolators
 - → Enables flexible and fast mounting of the different components
- Thrust Balance
 - → Double pendulum thrust balance with optical readout
- Plasma Diagnostics
 - → 15 Faraday Cups
 - → 1 Retarding Potential Analyser

Balance - Used Force Measurement Principle

- a) Damper
- b) Bearing
- c) Translation Sensor
- d) Pendulum Structure
 -) Thruster

22th May 2014

Micro Newton Thrust Balance

- Symmetric Double Pendulum Balance
- **Optical readout**
- Frictionless Bearing (4 leaf springs) •
- Laboratory for Enabling Technologies Tunable spring rate (calibration weights) •
- Calibration via an Electro-Static Comb (ESC) •
- Power supply via the leaf springs •
- Tunable damping via eddy current brake •

Calibration via ESC

• Thrust calculation:

•

Balance Performance Without Cryo Pump

Plasma Diagnostics

- Measurement Setup
 - 15 Faraday Cups
 - Measurement of Ion Current Density
 - Measurement of Ion beam divergence Angel
 - 1 Retarding Potential Analyser
 - Measurement of Ion Energy
 - All devices mounted on Jib-Arm
 - 180° rotatable around the thruster via Stepper Motor
 - Parallel measurements of the thrust balance and the plasma diagnostics are suitable

Plasma Diagnostics Measurement Results

Actual Status Micro-Highly Efficiency Multistage Plasma Thruster (µ-HEMP-T) Development

- µHEMP-T advantages (Simple as cold gas):
 - Only gas supply, one power supply and neutraliser needed
 - No liquid propellant (no vapor pressure problems, no heaters)
 - No radio frequency
 - No electro magnets
 - In worst case scenario can be used as cold gas thruster

Actual Status Micro-HEMP-T Development

- Result of the performed experimental parameter study
 - Micro HEMP-T are able to operate down 66 µN
 - Low ISPs at low thrust levels (< 200 s)
 - ISPs > 1500 s at 400 µN
 - Parameter study showed no limitations in point of down scaling

Conclusion and Outlook

- Conclusion
 - Micro Thruster Test Facility in Friedrichshafen is operational
 - Thrust balance fulfils the LISA Requirement in point of thrust noise
 - Simultaneous using of Plasma Diagnostics and Thrust balance leads to an effective thruster characterizing
 - Mirco-HEMP-T is scaled down to the higher micro-Newton range

Outlook

- Thrust measurements in closed loop
- Thrust measurements with permanent running cryo pump (better noise shielding)
- Characterising of other micro-Newton thruster e.g. µRIT, Cold Gas, In-FEEP and others
- Further downscaling of the micro-HEMP-T
 - \rightarrow Supported with a PiC Simulation
 - \rightarrow Test of a new Thruster Design

Thank you for your attention

22th May 2014

Micro-Newton HEMP-T Neutral Gas Flow Thrust

- Massflow steps of 0.025 sccm
- Every step generates 0.42 µN

•

Thrust Balance Performance

• Transfer Function Measurement and PSD Correction (shown PSD with reduced eddy current brake effect)

22th May 2014

Data Acquisition and Handling

New Test Facility

- New facility consists of:
 - Tank
 - Pumps + controllers
 - ITEM support structure
 - → Mounted on 4 optical isolators
 - → Enables flexible and fast mounting of the different components

Eddy Current Brake

• Implementation of an eddy current brake

- Two Nd₂Fe₁₄B Magnets are used per pendulum
- Aluminum plates used as conductor

22th May 2014

Plasma Diagnostics Measurement Results

- Every Cup and the RPA was calibrated with an highly precise current source
- Linear behavior of the whole electronics and low noise amplification

Plasma Diagnostic Electronics

Plasma Diagnostics Measurement Results

22th May 2014

Data Acquisition and Handling

Micro-Newton HEMP-T Thrust Measurement

- Measurement of the micro-Newton HEMP-T
- Red presents the calculated thrust

• Constant factor of 1.3 between calculated and measured thrust

Blue presents the measured thrust

•

Retarding Potential Analyser

- Measurement of the incoming lons at the Collector
- Secondary electrons are deflected by the suppressor Grid
- The Retarding Voltage are supplied via the Retarding grid
- Repelling Grid shields the setup from incoming electrons

Retarding Potential Analyser Design

Faraday Probe

• Faraday Probe Principle:

