Testing new GRS technologies and configurations with the UF torsion pendulum

John W. Conklin*, Ryan Shelley, Andrew Chilton, Taiwo Olatunde, Giacomo Ciani, Guido Mueller

University of Florida

*jwconklin@ufl.edu

Motivation for the UF Pendulum

- R & D of new inertial sensor technologies for GW observatories, geodesy, fundamental physics, ...
 - Charge management: New UV sources (LEDs) & discharging modes
 - 6 degree-of-freedom IFO readout (pm and nrad)
 - Alternate geometries and actuation modes (drift-mode)
- Independent confirmation of results from EuropeDevelop
- U.S. expertise in ultra-precise inertial sensors
 - Needed for U.S.-led GW mission
 - or for meaningful partnership
- It seems we have time to catch up.

UF Torsion Pendulum

Based on Trento pendulum

- Fiber supports cross bar with
 4 hollow TMs (rotation → translation)
- Light weight (0.46 kg) al structure reduces needed fiber diameter
- Measures surface forces

Simplified GRS

UV light

- Six electrodes, 40 nm/Hz^{1/2} sensitivity, translation only
- Al housing, Al electrodes, ceramic spacers, Au coated
- 3 UV injection ports

John W. Conklin, LISA X, 22 May 2014, Gainesville

Injection electrodes (2) sensing electrodes (4)

Simplified 6-electrode inertial sensor

AC Capacitive Readout & DC Actuation

First Oscillations

First Acceleration Noise Curve

Charge Control

Fiber to vac

chamber

 UV LEDs are attractive alternate to Hg lamps

Lens

- 240 ± 10 nm UV LED
 Au work function 243 nm
- Enables ac charge control
- ~10x reduction in SWaP

To board with controls

John W. Conklin, LISA X, 22 May 2014, Gaines

UV-LED

TEC

Fiber coupled UV LEDs (SETi)

UV LED Testing & Qualification Poster: T. Olatunde

- Tracking variations in QE, reflectivity of Au surfaces
 - QE varies widely with surface preparation, contamination •
 - QE (240 nm) \approx 2-10 x QE (250 nm) •
- UV LED Small Sat launch next month:

Initial Test Mass Charging Test

Bi-polar Charge Control

- Initial charge measurement scheme implemented
 - ± 10 V across sensitive axis @ 20 mHz \rightarrow oscillating field
 - Coherent response of the pendulum \propto TM charge
- 10^{-2} Bi-polar charge Oscillating control demoed: 10^{-3} field off LTP scheme TM charge 10⁻⁴ S^{1/2} (m/Hz^{1/2}) signal UV light directed to TM 10⁻⁵ or housing Oscillating 10^{-6} field on • 240 nm, 3.6 µW, dc 10^{-7} 10⁻⁸ $10^{-\bar{3}}$ 10⁻² 10^{-1} 10⁰ Frequency (Hz) 12

Future Plans

- Many things on our to do list:
- Noise hunting and noise reduction
- Develop and construct more flight-like GRS (requires funding)
- Integrate LISA-like short arm IFO (pm)
- DC, AC and/or continuous charge control
- Drift mode operation
- Six DOF optical sensing

Backup slides ...

The Gravitational Universe

A science theme addressed by the *eLISA* mission observing the entire Universe

LISA Gravitational Reference Sensor

John W. Conklin, LISA X, 22 May 2014, Gainesville

*F. Antonucci et al (2011)

GRS Testing

Torsion pendula

- Provides one (or more) DOF decoupled from local gravity
- U. Trento leading the development of the GRS, with two torsion pendula

LISA Pathfinder

- ESA LISA Technology Package will test the GRS in space
- Launch: July 2015

Zoo of Test Mass Surface Force Noise

Sensing bias TM charge DC voltages Any force gradient...

Thermal effects: Radiometer effect Radiation pressure Differential out-gassing

Electrostatics: TM random charging Stray DC voltages Electronics back-action

Residual gas damping

Unknown effects

UF Torsion Pendulum Design

- Based on Trento design + modifications
 - Longer arm for more real-estate & separation of forces & torques
 - Underground facility for improved thermal, seismic isolation
 - UV LED-based charge control system

Predicted Noise Limit

- Thermal torque noise: W fiber, ~ 1 m length, 50 μ m diam
- Arm length: 22 cm
- Pendulum mass: ~0.5 kg
- ϕ measurement: Differential interferometer ~ 10 prad Hz^{-1/2}

