Optical metrology systems for space applications

Martin Gohlke
German Aerospace Center
Institute of Space Systems, Bremen

LISA symposium X
Gainesville, FL, May 22, 2014
Content

• Assembly Integration Technologies
 • Comparison: mech. setup vs HC-bonding

• Interferometer
 • Testboard
 • Optical read out

• Iodine Standard
 • mSTAR mission
 • Iodine standard
 • EBB and EM

• Conclusion
Assembly Integration Technologies
Assembly Integration Technologies

Optical setups can be built up with:

- opto-mechanical components
 - Very flexible
 - Easy handling
 - Mechanically and thermally often not suitable for Space applications

- Hydroxide-catalysis / silicate Bonding and optical contacting
 - Extremely stable (thermally and mechanically)
 - suitable for Space applications
 - Complex and time-consuming integration process
 - Cleanroom environment needed
Assembly Integration Technologies
Overview

<table>
<thead>
<tr>
<th>Mechanical setups</th>
<th>HC bonding/ optical contacting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibility</td>
<td>Good</td>
</tr>
<tr>
<td>Time to adjust</td>
<td>Endless</td>
</tr>
<tr>
<td>Mechanical stability (w.r.t. shaker tests)</td>
<td>Low</td>
</tr>
<tr>
<td>Thermal stability</td>
<td>Low</td>
</tr>
<tr>
<td>Handling</td>
<td>Easy</td>
</tr>
<tr>
<td>Components req.</td>
<td>negligible</td>
</tr>
<tr>
<td>Environment</td>
<td>Lab</td>
</tr>
<tr>
<td>Curing time</td>
<td>None</td>
</tr>
</tbody>
</table>
Assembly Integration Technologies

Overview

<table>
<thead>
<tr>
<th></th>
<th>Mechanical setups</th>
<th>Adhesive bonding</th>
<th>HC bonding/ optical contacting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibility</td>
<td>Good</td>
<td>Fixed</td>
<td>Fixed</td>
</tr>
<tr>
<td>Time to adjust</td>
<td>Endless</td>
<td>Hours</td>
<td>Minutes / none</td>
</tr>
<tr>
<td>Mechanical stability (w.r.t. shaker tests)</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Thermal stability</td>
<td>Low</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>Handling</td>
<td>Easy</td>
<td>Mid</td>
<td>Complex</td>
</tr>
<tr>
<td>Components req.</td>
<td>negligible</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>Environment</td>
<td>Lab</td>
<td>Clean lab</td>
<td>Cleanroom</td>
</tr>
<tr>
<td>Curing time</td>
<td>None</td>
<td>Hours - day</td>
<td>Days – weeks / none</td>
</tr>
</tbody>
</table>
Assembly Integration Technologies
Adhesive Bonding / Hysol 9313

- Space qualified Epoxy

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer thickness</td>
<td>A few µm</td>
</tr>
<tr>
<td>Time to adjust</td>
<td>60 min</td>
</tr>
<tr>
<td>Curing time</td>
<td>1 day</td>
</tr>
<tr>
<td>Shear strength</td>
<td>28.9 MPa (25°C)</td>
</tr>
<tr>
<td>Temp. range</td>
<td>-55 to 50 °C</td>
</tr>
</tbody>
</table>

- Optical Components requirements
 - 2 arcsec right angle
 - $\lambda/10$ surface at the bottom
Interferometer
Assembly Integration Technologies
Interferometer

• Starting with a compact laboratory setup of a heterodyne interferometer (ORO)
• Testboard: Adhesive vs. HC Bonding
 • Shaker test (shock/sine/random)
 • Thermal test (-20°C to 50 °C)
 • Long time stability

→ Adhesive Bonding good enough for our application
Assembly Integration Technologies
Testboard shaker test

- Sine stimulation
- 5 Hz – 2 kHz
- 25.6 g_{rms}
Assembly Integration Technologies

Interferometer

• Starting with a compact laboratory setup of a heterodyne interferometer (ORO)
• Testboard: Adhesive vs. HC Bonding
 • Shaker test (shock/sine/random)
 • Thermal test (-20°C to 50 °C)
 • Long time stability
 → Adhesive Bonding good enough for our application

• Built up a Zerodur based interferometer using adhesive bonding
 • 17 components
 • Noise performance in the pm range, close to the LISA requirement
Iodine Standard
Iodine Standard
Planned mSTAR mission

• mSTAR - mini SpaceTime Asymmetry Research
• international collaboration
• technology demonstrator mission in a low-Earth orbit
• dedicated to perform a Kennedy-Thorndike experiment (testing special relativity)
• comparing an iodine standard to a cavity-based frequency reference
• integration over 2 year mission lifetime
• Kennedy-Thorndike coefficient will be determined with up to two orders of magnitude higher accuracy than the current best ground experiment
Iodine Standard Basics

- NPRO-type Nd:YAG laser @ 1064 nm
 - intrinsically high intensity and frequency stability
 - frequency-doubled to 532 nm

- hyperfine transition in molecular iodine taken as reference (a10 component of R(56)32-0 near 532 nm)
 - strong absorption
 - small natural linewidth (380 kHz)

- Better long time stability w.r.t. cavities (maybe useful in later laser link acquisition)

- State-of-the-art technology realized in various laboratories worldwide
Iodine Standard

Laboratory setup @ HU Berlin

- Fiber-coupled setup
- Modulation transfer spectroscopy
- 80 cm long iodine cell in single-pass configuration
- Fibre EOM
 - low driving voltage
 - low RAM due to low temperature drift
- Intensity stabilization of pump and probe beams via AOMs
- Noise-cancelling detection (balanced detector)
- dimensions: ~ (90 x 60 x 20) cm³
Iodine Standard
Elegant Breadboard level

• Realization of an iodine frequency reference on EBB level
• compact and robust spectroscopy setup
 • dimensions: (60 x 30 x 10) cm³
• 30 cm long iodine cell in triple-pass configuration (interaction length 3 x 30 cm)
• use of a baseplate made of ultra-low expansion glass ceramics
 • Clearceram-HS by OHARA with a CTE of 2*10⁻⁸ K⁻¹
• Frequency stability: 4x10⁻¹⁵ at 1000s integration time
Iodine Standard
Engineering Model

• Based on EBB design
• Iodine cell in nine pass configuration (interaction length 9 x 10 cm)
• More compact setup: 38 x 18 x 10 cm³
• Modulation either using fiber-EOM or AOM
• Balanced detection
• Commercial fiber collimators (Schäfter & Kirchhoff)
• Baseplate, iodine cell, optics made of fused silica
• Mounts for collimators, waveplates, polarizers made of Invar
Iodine Standard

Performance measurements

![Graph showing Allan Deviation against Averaging time](image)

- EM-EBB
- EM-ULE
- EBB-ULE

Linear drift of ULE cavity ~50 mHz/s
Isothermal creep of ULE material
Iodine Standard
Performance measurements

Linear drift of ULE cavity ~50 mHz/s
Isothermal creep of ULE material
Conclusion

• Adhesive bonding
 • an alternative assembly integration technology for optical setups
 • Easy-to-handle (more easy than hc-bonding)
 • Shock, vibration and thermal tests were performed and passed

• realization of an ultra-stable interferometer with pm noise level for translation measurements

• Two Iodine standards were shown on EBB and EM level
 • Frequency stability: 4×10^{-15} at 1000 s integration time
 • Compact setup: 38 x 18 x 10 cm³ (opt. part)
Thanks for your attention

Financial support by the German Space Agency DLR with funds provided by the Federal Ministry of Economics and Technology (BMWi) under grant numbers 50 QT 1102 and 50 QT 1201 is highly appreciated.

TEAM:

Thilo Schuldt, Claus Braxmaier,
Ewan Fitzsimons, Dennis Weise, Uli Johann,
Klaus Döringshoff, Achim Peters, Evgeny Kovalchuk