Experimental Investigation of Secondary Back-Reflection

Aaron Spector - University of Florida NASA Grants - NNXIIALI6H and NNHI0ZDA00IN

LISA X - Gainesville, Fl May 22, 2014

On-Axis Telescope

- Telescope transmits and receives lasers between SC
- On-axis quadpod (Cassegrain) design
 - Larger aperture to weight ratio than off-axis designs
 - 5% of light lost to shadows from Secondary support and struts
 - Symmetric shadows on quadrant photodetectors
 - Material stability confirmed to meet requirements
 - Thermal and dimensional stability tested at UF with GSFC using a SiC test spacer
 - J Sanjuan et al.
 - Potential Problem:

Back-reflection from the secondary mirror

Secondary

Primary

Telescope Back-Reflection

- Secondary and primary mirrors axially aligned
 - Outgoing beam incident normal to secondary mirror
 - Light reflected from secondary back to the optical bench
- Distance between OB and telescope not stabilized
 - Motion between the OB and telescope introduces phase noise to the BR light

2/10

Couples into measurement signal via small vector phase noise

Back-reflected Phase Noise

LISA pm phase noise requirements < 10⁻⁶ cycles/rtHz

3/10

- BR phase noise proportional to spatial overlap (η) of the far-field and BR field

$$\delta \phi = \eta \sqrt{\frac{P_o}{\chi P_I} \frac{\delta x}{\lambda}} \qquad \delta \phi < 10^{-6} \frac{\text{cycles}}{\sqrt{\text{Hz}}} \to \eta < 5 \times 10^{-5}$$

variable	description	value
Po	outgoing power	\lesssim 2 W
P_{I}	local oscillator power	\gtrsim 500 μ W
λ	laser wavelength	1064 nm
δx	distance changes between OB and telescope	10 nm/ \sqrt{Hz}
χ	extinction ratio of polarizing beam splitter	1000
η	spatial overlap between recieved and BR fields	$< 5 \times 10^{-5}$

Technical noise sources must be a factor of 10 below the LISA requirements:

 $\eta < 5 \times 10^{-6}$

• Unmitigated spatial overlap is 3×10⁻⁴

Lotus Shape

- Must cast shadow along optical axis
 - Use dark spot in the center of the Highly Reflective (HR) coating on the secondary
 - Initial simulations used a circular hole in the HR coating
 - Produces a bright spot along the optical axis (spot of Arago) $\eta = 8 \times 10^{-5}$
 - Must use irregular shape to break spatial coherence of the edge of the hole

Simulations:

- IO shapes investigated
- Huygen's integral and FFT propagation codes
- 'Lotus' shape chosen to investigate further
 - Axial power suppression limited by:
 - Petal tips minimum feature size (MFS)
 - Anti-Reflective (AR) coating reflectivity

On-Axis Telescope Simulations Experimental Investigation Future Work & Conclusions Simulated Distributions Simulated Distributions

5/10

Lotus

Rough Circle

- Lotus is an improvement over the rough circle
 - Do not meet requirements with 2 micron petal tips ($\eta = 1.1$ to 3.8×10^{-5})

Secondary Prototypes

- Deposited dielectric HR coating over curved substrate
 - I6 mm radius of curvature
- Imm diameter hole secondaries
 - 30 micron chipping region
- 'Lotus' secondaries manufactured using photo-lithographic techniques
 - 180 micron gold HR layer deposited over curved substrate (convex)
 - AR coating has reflectivity of 2.5×10⁻³
 - 2 mm diameter pattern etched into gold
 - Minimum feature size in petal tips of 2 microns
 - I micron undercut at the edge of the structure

Experimental Testbed

Experimental Investigation Future Work & Conclusions

Secondary prototypes tested on optical bench

 Telescope aperture beam shaping optics recreate simulated received field

Simulations

On-Axis Telescope

 Amplitude of interference signal between BR and received field measured on PD

Preliminary Results

- Results for Secondary Prototypes
 - Goal: $\eta < 5 \times 10^{-6}$
 - Measured unmitigated BR $\eta = 3.2 \times 10^{-4}$ (theory: 3.0×10^{-4})
 - Rough circular hole: $\eta = 4.1$ to 6.2×10^{-5} (theory: $4.8 \pm 0.4 \times 10^{-5}$)
 - Lotus: $\eta = 0.8$ to 2.2×10^{-5} (theory: 1.1 to 3.8×10^{-5})

Shape	Radius of Curvature	Max η (Experiment)	Max η (Simulation)
No Hole	16 mm	3.2×10 ⁻⁴	3.0×10 ⁻⁴
Circular Hole 1	16 mm	4.1×10 ⁻⁵	$4.8\pm0.4\times10^{-5}$
Circular Hole 2	16 mm	5.4×10 ⁻⁵	$4.8 \pm 0.4 \times 10^{-4}$
Circular Hole 3	16 mm	6.2×10 ⁻⁵	$4.8 \pm 0.4 \times 10^{-4}$
Lotus 1	39 mm	2.2×10 ⁻⁵	1.7×10 ⁻⁵
Lotus 1 (DL)	39 mm	1.5×10 ⁻⁵	1.3×10 ⁻⁵
Lotus 2	45 mm	9.8×10 ⁻⁶	2.9×10 ⁻⁵
Lotus 2 (DL)	45 mm	8.4×10 ⁻⁶	1.1×10 ⁻⁵
Lotus 3	51 mm	1.1×10^{-5}	2.2×10 ⁻⁵
Lotus 3 (DL)	51 mm	1.2×10 ⁻⁵	1.4×10 ⁻⁵
Lotus 4	77 mm	1.7×10 ⁻⁵	3.7×10 ⁻⁵
Lotus 4 (DL)	77 mm	1.7×10 ⁻⁵	3.8×10 ⁻⁵

Preliminary Results

- Results for Secondary Prototypes
 - Goal: $\eta < 5 \times 10^{-6}$
 - Measured unmitigated BR $\eta = 3.2 \times 10^{-4}$ (theory: 3.0×10^{-4})
 - Rough circular hole: $\eta = 4.1$ to 6.2×10^{-5} (theory: $4.8 \pm 0.4 \times 10^{-5}$)
 - Lotus: $\eta = 0.8$ to 2.2×10^{-5} (theory: 1.1 to 3.8×10^{-5})

Future Work

Apodized Shapes

- Etch sub-wavelength features into gold coating
- Forms a tunable effective index of refraction
- Allows for smooth transition from AR to HR
 - Reduces light scattered due to diffraction effects
 - For ideal AR coating $\eta = 1$ to 4×10^{-7}
 - For practical AR coating (R = 0.25%) η = 2 to 4 × 10⁻⁶

90

Conclusions

Results: We are close but not quite there

- Best Lotus pattern etching within a factor of 1.7 of the requirements
- Different results for different telescope designs
- Simulations: limited by minimum feature size in the petal tips

Future: Apodized coatings present a possible solution

- Simulated back-reflection below spatial overlap requirements
- Work with practical AR coatings
- Have procedure to manufacture coatings at UF, with help from the NRF

Thank You!

Experimental Testbed

extra

- Secondary prototypes tested on optical bench
 - 2 Lasers phase locked at 10 MHz with clocks synchronized to acromag card
 - Telescope aperture beam shaping optics recreate simulated received field
 - $\lambda/4$ wave plate and PBS used to separate back-reflected and incident beams
 - PZT mirror scans incident beam over mirror positions
 - Interference signal of far-field and BR field sent from PD to acromag card
 - Amplitude of both quadratures measured to eliminate path length noise
 - Amplitude of the signal is calibrated to give the spatial overlap

Lotus Shape

Average Reflectivity for a given radial length

extra

Spiral Simulations

extra