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Low noise laser interferometer design 
using IfoCAD  

● C/C++ Library for laser interferometer design and optimization 

● public C version (→ google), C++ version on request 

● developed at AEI since ~2010 

● features 

● propagation of various beam types (Gaussian beams incl. 
higher order; general astigmatism; FFT-optics) 

● photodiode readout signals  

● optimization routines
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Interferometer Signals

s

DPSh

Phase:  
readout of longitudinal 
shifts

DWS:  
(differential wavefront 
sensing) 
measure of beam tilt

DPS:  
(differential power sensing) 
measure of beam 
displacement

Contrast:  
measures of beam 
overlap quality
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what is this exactly?
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Phase on a quadrant diode?
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The amount of phase noise on our quadrant  
diode depends on the chosen phase definition!
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The amount of phase noise on our quadrant  
diode depends on the chosen phase definition! 
This is an example. 
We do not know - yet - ….  
which definition is best for LISA
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Phase on a quadrant diode?
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cross coupling vanishes  
on a large single element detector 
- provided that  
the beam parameters are matched

this is not intuitive…
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Fig. 1. Resulting fringe visibility (contrast, left) and differential phase converted to length
(longitudinal path length signal LPS = (f � f |am=0)/k, right). The solid lines were gen-
erated with Eq. (28) and Eq. (23) respectively, the matching dots show numerical results
generated with IfoCAD.

which was also found in [11, Eq. (5.1)]. In the case of matched beam parameter (zm = zr =
z,z0,m = z0,r = z0 or equivalently wm = wr = w,Rm = Rr = R) normal incidence of both beams
(am,r = 0) we find:

c = AP exp

�k

(xi,m � xi,r)2 +(yi,m � yi,r)2

4z0

�
(32)

= AP exp

�(4R2 + k2w4)

(xi,m � xi,r)2 +(yi,m � yi,r)2

8R2w2

�
. (33)

For us, a typical problem is the effect of beam tilt on the interferometric phase readout: f(a).
We assume here a well aligned static reference beam (ar = xi,r = yi,r = 0). The measurement
beam is initially aligned (i.e. xi,m = yi,m = 0), and then rotates around an arbitrary pivot point
where the y-axis is chosen as rotation axis (nx,ny,nz)m = (0,1,0). Furthermore, nearly equal
beam parameters are assumed (z0,r = z0,z0,m = z0+Dz0 and zr = z,zm = z+Dz or wr = w,wm =
w+Dw,Rr = R,Rm = R+DR). The resulting longitudinal pathlength readout signal (Eq. (29))
expanded up to second order in the measurement beam angle a and first order in either variation
D is:

LPS(a,Dz0,Dz)⇡ a2

k

✓
z

4z0
+Dz0

2kz0(zp + z)� z
8z2

0
+Dz

k((z+ zp)2 � z2
0)+ z0

8z2
0

◆
(34)

and to first order differences of the radius of curvature DR and spot size Dw (with wr = w,wm =
wr +Dw,Rr = R,Rm = R+DR):

LPS(a,Dw,DR)⇡ a2

 
w2

8R
+DR

�2R2(2z2
p +w2)+ k2w4(zp +R)2

32R4 +Dw
w2 +4zp(zp +R)

8Rw

!
.

(35)

6. Summary and Conclusions

We have derived analytical equations for the phase and contrast of two arbitrary interfering
Gaussian beams. We showed for a very general example perfect agreement with numerical
results from IfoCAD [10]. We showed reduced equations for special cases and compared to

http://dx.doi.org/10.1364/AO.53.003043	


Analytical description of interference between

two misaligned and mismatched complete
Gaussian beams

Gudrun Wanner* and Gerhard Heinzel

Max Planck Institute for Gravitational Physics (Albert Einstein Institute) and Institute for Gravitational

Physics of the Leibniz Universität Hannover, Callinstr. 38, D-30167 Hannover, Germany

*Corresponding author: gudrun.wanner@aei.mpg.de

Received 27 February 2014; revised 2 April 2014; accepted 3 April 2014;

posted 8 April 2014 (Doc. ID 207293); published 7 May 2014

A typical application for laser interferometers is a precision measurement of length changes that

results in interferometric phase shifts. Such phase changes are typically predicted numerically, due

to the complexity of the overlap integral that needs to be solved. In this paper we will derive analytical

representations of the interferometric phase and contrast (aka fringe visibility) for two beam interfer-

ometers, both homodyne and heterodyne. The fundamental Gaussian beams can be arbitrarily

misaligned and mismatched to each other. A limitation of the analytical result is that both beams

must be detected completely, which can experimentally be realized by a sufficiently large single-element

photodetector. © 2014 Optical Society of America

OCIS codes: (120.3180) Interferometry; (000.3860) Mathematical methods in physics; (200.1130)

Algebraic optical processing.
http://dx.doi.org/10.1364/AO.53.003043

1. IntroductionPhase shifts in laser interferometers are a precision

measure for length variations. These phase shifts are

typically predicted using commercial software tools

such as ZEMAX, CodeV, FRED, and the like, which

usually compute phases with respect to either a refe-

rence sphere or plane. Alternatively, dedicated

algorithms such as IfoCAD [1,2], OptoCad [3], and

FINESSE [4] are used in academic environments,

and the interferometric phase is computed by inte-

gration of the incident beams over the detector sur-

face (see for example [5,6]). In any case, a variety of

different methods are applied, such as Fourier optics

or Gaussian beam propagation with the ABCD for-

malism followed by numerical integration and final

phase computation by fringe analysis methods

[7–13]. In any chosen option, the phase shift is

computed numerically. We will show here that it is

also possible to compute the interferometric phase

and contrast on a large single element photodiode

analytically, for two fundamental Gaussian beams

with arbitrary beam parameters (waist positions

and waist sizes) and arbitrary mutual alignment.

The only assumptions made here are:
1. The detector is an infinite plane; in our expe-

rience this is a valid assumption if the detector area

covers at least three times the Gaussian radius of

both beams such that no clipping occurs.

2. On the detector the spot sizes wm;r, radii of

curvature Rm;r and Gouy phases ηm;r are unaffected

by applied shifts and tilts. These parameters remain

constant during coordinate transformations. This is

a valid assumption for the usual case of small

misalignments.3. Both beams have the same wave number

km ! kr ≕ k, which is the case if the interferometer

is either

1559-128X/14/143043-06$15.00/0
© 2014 Optical Society of America
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the incident beams over a finite detector (20 mm was
chosen for the comparison); the phase extraction
method in IfoCAD deviates from the one shown here,
but this has no physical relevance.

The results match very well, as shown in Fig. 2.
Here, the upper graph shows the interferometric
phase converted to a length: the longitudinal path-
length signal

LPS≔
1
k
!ϕ − ϕjαm"0#: (29)

The lower graph shows the contrast. The measure-
ment beam angle was varied and LPS and con-
trast computed for different Rayleigh ranges of the
measurement beam: zR;m " !5000 mm;1500 mm;
500 mm;250 mm#. The graphs were generated with
the following assumptions: k " 2π∕!1064 nm#,
Pm " 0.3 mW, Pr " 0.7 mW, xi;m " −400 μm, yi;m"
300μm, xi;r " 250 μm, yi;r " −100 μm, zr"0.03452m,
zm"3.768m, zR;r"3.137m, zR;m " 4.124 m, rotation
axis !nx; ny; nz#m " !0; 1; 0#, !nx; ny; nz#r " !0.5547;
0.83205; 0#, pivot points !xp; yp; zp#m " !12 μm;
50 μm; 4 mm#, !xp;yp;zp#r " !−7 μm;200 μm;−2mm#,
and a reference beam angle αr " 50 μrad.

5. Some Useful Special Cases

If both beams impinge with zero angle in the center
of the detector (αm;r " xi;m " xi;r " yi;m " yi;r " 0),
the contrast given in Eq. (28) takes the following
form:

c " AP
2 !!!!!!!!!!!!!!!!!zR;mzR;r
p

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!zR;m $ zR;r#2 $ !zm − zr#2

q (30)

" AP
2

wmwr

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
k

2Rm
− k

2Rr

#
2
$

"
1
w2

m
$ 1

w2
r

#
2

r ; (31)

which was also found in [14, Eq. (5.1)]. In the case
of matched beam parameter (zm " zr " z; zR;m "
zR;r " zR or equivalently wm " wr " w;Rm " Rr "
R) normal incidence of both beams (αm;r " 0), we find

c " AP exp
$
−k

!xi;m − xi;r#2 $ !yi;m − yi;r#2

4zR

%
(32)

" AP exp
$
−!4R2 $ k2w4#

!xi;m − xi;r#2 $ !yi;m − yi;r#2

8R2w2

%
:

(33)

For us, a typical problem is the effect of beam tilt
on the interferometric phase readout: ϕ!α#. We as-
sume here a well aligned static reference beam
(αr " xi;r " yi;r " 0). The measurement beam is ini-
tially aligned (i.e., xi;m " yi;m " 0), and then rotates
around an arbitrary pivot point where the y axis
is chosen as rotation axis !nx; ny; nz#m " !0; 1; 0#.
Furthermore, nearly equal beam parameters are
assumed (zR;r " zR; zR;m " zR $ ΔzR and zr " z; zm "
z$ Δz or wr " w;wm " w$ Δw;Rr " R;Rm " R$
ΔR). The resulting longitudinal pathlength readout
signal [Eq. (29)] expanded up to second order in
the measurement beam angle α and first order in
either variation Δ is

LPS!α;ΔzR;Δz# ≈
α2

k

&
z

4zR
$ ΔzR

2kzR!zp $ z# − z
8z2R

$ Δz
k!!z$ zp#2 − z2R# $ zR

8z2R

'
(34)

and to first order differences of the radius of
curvature ΔR and spot size Δw (with wr " w;
wm " wr $ Δw;Rr " R;Rm " R$ ΔR):

LPS!α;Δw;ΔR#

≈ α2
&
w2

8R
$ ΔR

−2R2!2z2p $w2# $ k2w4!zp $R#2

32R4

$ Δw
w2 $ 4zp!zp $R#

8Rw

'
: (35)

6. Summary and Conclusion

We have derived analytical equations for the phase
and contrast of two arbitrary interfering Gaussian
beams. We showed for a very general example perfect
agreement with numerical results from IfoCAD [2].
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Fig. 2. Differential phase converted to length (longitudinal path
length signal LPS " !ϕ − ϕjαm"0#∕k, top) and fringe visibility
(contrast, bottom). The solid lines were generated with Eqs. (23)
and (28), respectively, the matching dots show numerical results
generated with IfoCAD.
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Fig. 1. Resulting fringe visibility (contrast, left) and differential phase converted to length
(longitudinal path length signal LPS = (f � f |am=0)/k, right). The solid lines were gen-
erated with Eq. (28) and Eq. (23) respectively, the matching dots show numerical results
generated with IfoCAD.

which was also found in [11, Eq. (5.1)]. In the case of matched beam parameter (zm = zr =
z,z0,m = z0,r = z0 or equivalently wm = wr = w,Rm = Rr = R) normal incidence of both beams
(am,r = 0) we find:

c = AP exp

�k

(xi,m � xi,r)2 +(yi,m � yi,r)2

4z0

�
(32)

= AP exp

�(4R2 + k2w4)

(xi,m � xi,r)2 +(yi,m � yi,r)2

8R2w2

�
. (33)

For us, a typical problem is the effect of beam tilt on the interferometric phase readout: f(a).
We assume here a well aligned static reference beam (ar = xi,r = yi,r = 0). The measurement
beam is initially aligned (i.e. xi,m = yi,m = 0), and then rotates around an arbitrary pivot point
where the y-axis is chosen as rotation axis (nx,ny,nz)m = (0,1,0). Furthermore, nearly equal
beam parameters are assumed (z0,r = z0,z0,m = z0+Dz0 and zr = z,zm = z+Dz or wr = w,wm =
w+Dw,Rr = R,Rm = R+DR). The resulting longitudinal pathlength readout signal (Eq. (29))
expanded up to second order in the measurement beam angle a and first order in either variation
D is:

LPS(a,Dz0,Dz)⇡ a2

k

✓
z

4z0
+Dz0

2kz0(zp + z)� z
8z2

0
+Dz

k((z+ zp)2 � z2
0)+ z0

8z2
0

◆
(34)

and to first order differences of the radius of curvature DR and spot size Dw (with wr = w,wm =
wr +Dw,Rr = R,Rm = R+DR):

LPS(a,Dw,DR)⇡ a2

 
w2

8R
+DR

�2R2(2z2
p +w2)+ k2w4(zp +R)2

32R4 +Dw
w2 +4zp(zp +R)

8Rw

!
.

(35)

6. Summary and Conclusions

We have derived analytical equations for the phase and contrast of two arbitrary interfering
Gaussian beams. We showed for a very general example perfect agreement with numerical
results from IfoCAD [10]. We showed reduced equations for special cases and compared to
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1. IntroductionPhase shifts in laser interferometers are a precision

measure for length variations. These phase shifts are

typically predicted using commercial software tools

such as ZEMAX, CodeV, FRED, and the like, which

usually compute phases with respect to either a refe-

rence sphere or plane. Alternatively, dedicated

algorithms such as IfoCAD [1,2], OptoCad [3], and

FINESSE [4] are used in academic environments,

and the interferometric phase is computed by inte-

gration of the incident beams over the detector sur-

face (see for example [5,6]). In any case, a variety of

different methods are applied, such as Fourier optics

or Gaussian beam propagation with the ABCD for-

malism followed by numerical integration and final

phase computation by fringe analysis methods

[7–13]. In any chosen option, the phase shift is

computed numerically. We will show here that it is

also possible to compute the interferometric phase

and contrast on a large single element photodiode

analytically, for two fundamental Gaussian beams

with arbitrary beam parameters (waist positions

and waist sizes) and arbitrary mutual alignment.

The only assumptions made here are:
1. The detector is an infinite plane; in our expe-

rience this is a valid assumption if the detector area

covers at least three times the Gaussian radius of

both beams such that no clipping occurs.

2. On the detector the spot sizes wm;r, radii of

curvature Rm;r and Gouy phases ηm;r are unaffected

by applied shifts and tilts. These parameters remain

constant during coordinate transformations. This is

a valid assumption for the usual case of small

misalignments.3. Both beams have the same wave number

km ! kr ≕ k, which is the case if the interferometer

is either

1559-128X/14/143043-06$15.00/0
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cross coupling vanishes  
on a large single element detector 
- provided that  
the beam parameters are matched

http://dx.doi.org/10.1364/AO.53.003043
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Fig. 1. Resulting fringe visibility (contrast, left) and differential phase converted to length
(longitudinal path length signal LPS = (f � f |am=0)/k, right). The solid lines were gen-
erated with Eq. (28) and Eq. (23) respectively, the matching dots show numerical results
generated with IfoCAD.

which was also found in [11, Eq. (5.1)]. In the case of matched beam parameter (zm = zr =
z,z0,m = z0,r = z0 or equivalently wm = wr = w,Rm = Rr = R) normal incidence of both beams
(am,r = 0) we find:

c = AP exp

�k

(xi,m � xi,r)2 +(yi,m � yi,r)2

4z0

�
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= AP exp
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8R2w2

�
. (33)

For us, a typical problem is the effect of beam tilt on the interferometric phase readout: f(a).
We assume here a well aligned static reference beam (ar = xi,r = yi,r = 0). The measurement
beam is initially aligned (i.e. xi,m = yi,m = 0), and then rotates around an arbitrary pivot point
where the y-axis is chosen as rotation axis (nx,ny,nz)m = (0,1,0). Furthermore, nearly equal
beam parameters are assumed (z0,r = z0,z0,m = z0+Dz0 and zr = z,zm = z+Dz or wr = w,wm =
w+Dw,Rr = R,Rm = R+DR). The resulting longitudinal pathlength readout signal (Eq. (29))
expanded up to second order in the measurement beam angle a and first order in either variation
D is:

LPS(a,Dz0,Dz)⇡ a2
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and to first order differences of the radius of curvature DR and spot size Dw (with wr = w,wm =
wr +Dw,Rr = R,Rm = R+DR):

LPS(a,Dw,DR)⇡ a2
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(35)

6. Summary and Conclusions

We have derived analytical equations for the phase and contrast of two arbitrary interfering
Gaussian beams. We showed for a very general example perfect agreement with numerical
results from IfoCAD [10]. We showed reduced equations for special cases and compared to
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1. IntroductionPhase shifts in laser interferometers are a precision

measure for length variations. These phase shifts are

typically predicted using commercial software tools

such as ZEMAX, CodeV, FRED, and the like, which

usually compute phases with respect to either a refe-

rence sphere or plane. Alternatively, dedicated

algorithms such as IfoCAD [1,2], OptoCad [3], and

FINESSE [4] are used in academic environments,

and the interferometric phase is computed by inte-

gration of the incident beams over the detector sur-

face (see for example [5,6]). In any case, a variety of

different methods are applied, such as Fourier optics

or Gaussian beam propagation with the ABCD for-

malism followed by numerical integration and final

phase computation by fringe analysis methods

[7–13]. In any chosen option, the phase shift is

computed numerically. We will show here that it is

also possible to compute the interferometric phase

and contrast on a large single element photodiode

analytically, for two fundamental Gaussian beams

with arbitrary beam parameters (waist positions

and waist sizes) and arbitrary mutual alignment.

The only assumptions made here are:
1. The detector is an infinite plane; in our expe-

rience this is a valid assumption if the detector area

covers at least three times the Gaussian radius of

both beams such that no clipping occurs.

2. On the detector the spot sizes wm;r, radii of

curvature Rm;r and Gouy phases ηm;r are unaffected

by applied shifts and tilts. These parameters remain

constant during coordinate transformations. This is

a valid assumption for the usual case of small

misalignments.3. Both beams have the same wave number

km ! kr ≕ k, which is the case if the interferometer

is either

1559-128X/14/143043-06$15.00/0
© 2014 Optical Society of America

10 May 2014 / Vol. 53, No. 14 / APPLIED OPTICS 3043

cross coupling vanishes  
on a large single element detector 
- provided that  
the beam parameters are matched
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Fig. 1. Resulting fringe visibility (contrast, left) and differential phase converted to length
(longitudinal path length signal LPS = (f � f |am=0)/k, right). The solid lines were gen-
erated with Eq. (28) and Eq. (23) respectively, the matching dots show numerical results
generated with IfoCAD.

which was also found in [11, Eq. (5.1)]. In the case of matched beam parameter (zm = zr =
z,z0,m = z0,r = z0 or equivalently wm = wr = w,Rm = Rr = R) normal incidence of both beams
(am,r = 0) we find:

c = AP exp
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(xi,m � xi,r)2 +(yi,m � yi,r)2

4z0

�
(32)

= AP exp

�(4R2 + k2w4)
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�
. (33)

For us, a typical problem is the effect of beam tilt on the interferometric phase readout: f(a).
We assume here a well aligned static reference beam (ar = xi,r = yi,r = 0). The measurement
beam is initially aligned (i.e. xi,m = yi,m = 0), and then rotates around an arbitrary pivot point
where the y-axis is chosen as rotation axis (nx,ny,nz)m = (0,1,0). Furthermore, nearly equal
beam parameters are assumed (z0,r = z0,z0,m = z0+Dz0 and zr = z,zm = z+Dz or wr = w,wm =
w+Dw,Rr = R,Rm = R+DR). The resulting longitudinal pathlength readout signal (Eq. (29))
expanded up to second order in the measurement beam angle a and first order in either variation
D is:

LPS(a,Dz0,Dz)⇡ a2
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and to first order differences of the radius of curvature DR and spot size Dw (with wr = w,wm =
wr +Dw,Rr = R,Rm = R+DR):
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6. Summary and Conclusions

We have derived analytical equations for the phase and contrast of two arbitrary interfering
Gaussian beams. We showed for a very general example perfect agreement with numerical
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also possible to compute the interferometric phase

and contrast on a large single element photodiode

analytically, for two fundamental Gaussian beams

with arbitrary beam parameters (waist positions
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The only assumptions made here are:
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rience this is a valid assumption if the detector area

covers at least three times the Gaussian radius of
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curvature Rm;r and Gouy phases ηm;r are unaffected

by applied shifts and tilts. These parameters remain

constant during coordinate transformations. This is

a valid assumption for the usual case of small
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Fig. 1. Resulting fringe visibility (contrast, left) and differential phase converted to length
(longitudinal path length signal LPS = (f � f |am=0)/k, right). The solid lines were gen-
erated with Eq. (28) and Eq. (23) respectively, the matching dots show numerical results
generated with IfoCAD.

which was also found in [11, Eq. (5.1)]. In the case of matched beam parameter (zm = zr =
z,z0,m = z0,r = z0 or equivalently wm = wr = w,Rm = Rr = R) normal incidence of both beams
(am,r = 0) we find:

c = AP exp

�k

(xi,m � xi,r)2 +(yi,m � yi,r)2

4z0

�
(32)

= AP exp

�(4R2 + k2w4)

(xi,m � xi,r)2 +(yi,m � yi,r)2

8R2w2

�
. (33)

For us, a typical problem is the effect of beam tilt on the interferometric phase readout: f(a).
We assume here a well aligned static reference beam (ar = xi,r = yi,r = 0). The measurement
beam is initially aligned (i.e. xi,m = yi,m = 0), and then rotates around an arbitrary pivot point
where the y-axis is chosen as rotation axis (nx,ny,nz)m = (0,1,0). Furthermore, nearly equal
beam parameters are assumed (z0,r = z0,z0,m = z0+Dz0 and zr = z,zm = z+Dz or wr = w,wm =
w+Dw,Rr = R,Rm = R+DR). The resulting longitudinal pathlength readout signal (Eq. (29))
expanded up to second order in the measurement beam angle a and first order in either variation
D is:

LPS(a,Dz0,Dz)⇡ a2
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and to first order differences of the radius of curvature DR and spot size Dw (with wr = w,wm =
wr +Dw,Rr = R,Rm = R+DR):
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6. Summary and Conclusions

We have derived analytical equations for the phase and contrast of two arbitrary interfering
Gaussian beams. We showed for a very general example perfect agreement with numerical
results from IfoCAD [10]. We showed reduced equations for special cases and compared to
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malism followed by numerical integration and final

phase computation by fringe analysis methods

[7–13]. In any chosen option, the phase shift is

computed numerically. We will show here that it is

also possible to compute the interferometric phase

and contrast on a large single element photodiode

analytically, for two fundamental Gaussian beams

with arbitrary beam parameters (waist positions

and waist sizes) and arbitrary mutual alignment.

The only assumptions made here are:
1. The detector is an infinite plane; in our expe-

rience this is a valid assumption if the detector area

covers at least three times the Gaussian radius of

both beams such that no clipping occurs.

2. On the detector the spot sizes wm;r, radii of

curvature Rm;r and Gouy phases ηm;r are unaffected

by applied shifts and tilts. These parameters remain

constant during coordinate transformations. This is

a valid assumption for the usual case of small

misalignments.3. Both beams have the same wave number
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Fig. 1. Resulting fringe visibility (contrast, left) and differential phase converted to length
(longitudinal path length signal LPS = (f � f |am=0)/k, right). The solid lines were gen-
erated with Eq. (28) and Eq. (23) respectively, the matching dots show numerical results
generated with IfoCAD.

which was also found in [11, Eq. (5.1)]. In the case of matched beam parameter (zm = zr =
z,z0,m = z0,r = z0 or equivalently wm = wr = w,Rm = Rr = R) normal incidence of both beams
(am,r = 0) we find:
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(xi,m � xi,r)2 +(yi,m � yi,r)2

4z0

�
(32)

= AP exp

�(4R2 + k2w4)

(xi,m � xi,r)2 +(yi,m � yi,r)2

8R2w2

�
. (33)

For us, a typical problem is the effect of beam tilt on the interferometric phase readout: f(a).
We assume here a well aligned static reference beam (ar = xi,r = yi,r = 0). The measurement
beam is initially aligned (i.e. xi,m = yi,m = 0), and then rotates around an arbitrary pivot point
where the y-axis is chosen as rotation axis (nx,ny,nz)m = (0,1,0). Furthermore, nearly equal
beam parameters are assumed (z0,r = z0,z0,m = z0+Dz0 and zr = z,zm = z+Dz or wr = w,wm =
w+Dw,Rr = R,Rm = R+DR). The resulting longitudinal pathlength readout signal (Eq. (29))
expanded up to second order in the measurement beam angle a and first order in either variation
D is:
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and to first order differences of the radius of curvature DR and spot size Dw (with wr = w,wm =
wr +Dw,Rr = R,Rm = R+DR):
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We have derived analytical equations for the phase and contrast of two arbitrary interfering
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the beam parameters are matched

Rayleigh range mismatch

waist position mismatch

http://dx.doi.org/10.1364/AO.53.003043


● Angular jitter of Test Mass or Spacecraft  
→ beam walk  on photodiode 
→ pathlength noise 
!

● LISA Pathfinder:  
noise reduction by subtraction 
!

● (e)LISA: 

● subtraction AND 

● imaging of critical planes to PD planes
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Tilt to Length Coupling

i1. s2.LTP OBI: Optical Model, 02 Aug 2007
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● Angular jitter of Test Mass or Spacecraft  
→ beam walk  on photodiode 
→ pathlength noise 
!

● LISA Pathfinder:  
noise reduction by subtraction 
!

● (e)LISA: 

● subtraction AND 

● imaging of critical planes to PD planes
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Tilt to Length Coupling
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● Imaging → reduction of phase noise?
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Tilt to Length Coupling Reduction

Tilt Locking

Pathlength Control Loop 
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● issues: 

● alignment 

● beam parameter mismatch

poster of Sönke Schuster



● Ray tracing 

● Gaussian beams 
● q-parameter propagation 

● general astigmatism accounted for
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Beam propagation 

6.5. Measurements with the nearly optimal setup Chapter 6: Experiment

z = 3.5 cm, �w = 22.7� z = 5.5 cm, �w = 39� z = 7.5 cm, �w = 50.6�

z = 9.5 cm, �w = 57.2� z = 11.5 cm, �w = 65.2� z = 13.5 cm, �w = 70.7�

z = 15.5 cm, �w = 79.6� z = 17.5 cm, �w = 92� z = 19.5 cm, �w = 102.5�

Figure 6.14.: The evolution of intensity ellipse of the general astigmatic beam produced by
the nearly optimal setup. Snapshots from the CCD camera taken at di↵erent distances z
behind the second cylindrical lens. The orientation �w of each intensity ellipse was defined
by the CCD camera software.

82

experiment simulation

http://dx.doi.org/10.1364/AO.52.006030

courtesy: Evgenia Kochkina

http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030
http://dx.doi.org/10.1364/AO.52.006030


● Non-Gaussian beams: Top Hats, Fibre modes, … 

● FFT-propagation
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Beam propagation with defraction 

courtesy: Vitali Müller, Sönke Schuster



● Non-Gaussian beams: Top Hats, Fibre modes, … 
● FFT-propagation 
● Mode Expansion Method:  

Expansion of fields in higher order 
Hermite-Gaussian or Laguerre-Gaussian modes

22

Beam propagation 

  

Tracing of non-Gaussian beams

Expansion of non-Gaussian fields in 

● Hermite-Gaussian or

● Laguerre-Gaussian modes

non-Gaussian beams of interest are, for example

● Fibre modes

● Tophat beams

● Clipped Gaussian beams
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Propagation of Tophat beam
Aperturradius 1mm
Fernfeld entspricht dem Airy 
Pattern
Modenzerlegung gibt gute 
Approximation ab etwa 50mm
Propagationsdistanz nach 
der Apertur

Top Hat beam

courtesy: Christoph Mahrdt
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Propagation of Fibre Mode LP
01

Intensity pattern 
at the end-face
of the curved
Interface

Der Faserauskoppler ist 3.4 cm lang und ist aus 
Fused Silica gemacht.
Der Faserkernradius ist angenommen als a = 2.54 µm

Fibre mode propagation

courtesy: Christoph Mahrdt



● Optimize 

● optimal beam overlap on beam 
combiners and photo diodes 

● least clipping 

● equal arm lengths 

● low stray light 

● space 

● …
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Optimizing interferometers

● Example: Hexagon Interferometer 

● optimization with  
wedged beam splitters 

● auto-alignment 
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