Albert Einstein Institute

Low noise laser interferometer design using IfoCAD

Gudrun Wanner, Christoph Mahrdt, Vitali Müller, Sönke Schuster, Gerhard Heinzel and Karsten Danzmann

http://www.geo600.uni-hannover.de/ifocad/

EA

Gentey frot Gurfum Engivering and Spart Tine Revinh

Ebnie IVinersitit Hunover Germey

Gemus Resupuct
Cester

We gratefully acknowledge support by the European Space Agency (ESA) (22331/09/NL/HB, 16238/10/NL/HB) and the German Aerospace Center (DLR) (500Q0601, 500Q1301) and thank the German Research Foundation for funding the Cluster of Excellence QUEST (Centre for Quantum Engineering and Space-Time Research).

Albert Einstein Institute

Low noise laser interferometer design using IfoCAD

- C/C++ Library for laser interferometer design and optimization
- public C version (\rightarrow google), C++ version on request
- developed at AEI since ~ 2010
- features
- propagation of various beam types (Gaussian beams incl. higher order; general astigmatism; FFT-optics)
- photodiode readout signals
- optimization routines

Interferometer Signals

Phase: readout of longitudinal shifts

$$
\phi=k \cdot s:=\frac{2 \pi}{\lambda} s
$$

DWS:

(differential wavefront sensing)
measure of beam tilt

$$
\mathrm{DWS}_{\mathrm{h}}=\phi_{\text {left }}-\phi_{\text {right }}
$$

DPS:

(differential power sensing)

Contrast:
measures of beam overlap quality
measure of beam displacement

$\mathrm{DPS}_{\mathrm{h}}=\frac{P_{\text {left }}-P_{\text {right }}}{\bar{P}_{\text {left }}+\bar{P}_{\text {right }}}$

$$
c:=\frac{P_{\max }-P_{\min }}{P_{\max }+P_{\min }}
$$

Phase on a quadrant diode?

Phase on a quadrant diode?

$$
\begin{gathered}
\left(\Phi_{1}, A_{1}\right) \\
\left(\Phi_{3}, A_{3}\right)\left(\Phi_{2}, A_{2}\right) \\
\Phi_{\mathrm{LPF}}=\operatorname{Arg}\left(\sum_{n=1}^{4} A_{n} \exp \left(i \Phi_{n}\right)\right) \\
\Phi_{\mathrm{AP}}=\frac{1}{4}\left(\sum_{n=1}^{4} \Phi_{n}\right) \\
\Phi_{\mathrm{WAP}}=\frac{A_{1} \Phi_{1}+A_{2} \Phi_{2}+A_{3} \Phi_{3}+A_{4} \Phi_{4}}{A_{1}+A_{2}+A_{3}+A_{4}}
\end{gathered}
$$

Phase on a quadrant diode?

$$
\begin{aligned}
\Phi_{\mathrm{LPF}} & =\operatorname{Arg}\left(\sum_{n=1}^{4} A_{n} \exp \left(i \Phi_{n}\right)\right)^{-0.18} \\
\Phi_{\mathrm{AP}} & =\frac{1}{4}\left(\sum_{n=1}^{4} \Phi_{n}\right) \\
\Phi_{\mathrm{WAP}} & =\frac{A_{1} \Phi_{1}+A_{2} \Phi_{2}+A_{3} \Phi_{3}+A_{4} \Phi_{4}}{A_{1}+A_{2}+A_{3}+A_{4}}
\end{aligned}
$$

Phase on a quadrant diode?

$$
\Phi_{\mathrm{AP}}=\frac{1}{4}\left(\sum_{n=1}^{4} \Phi_{n}\right)
$$

$$
\Phi_{\mathrm{WAP}}=\frac{A_{1} \Phi_{1}+A_{2} \Phi_{2}+A_{3} \Phi_{3}+A_{4} \Phi_{4}}{A_{1}+A_{2}+A_{3}+A_{4}}
$$

Phase on a quadrant diode?

$$
\begin{aligned}
& \Phi_{\mathrm{AP}}=\frac{1}{4}\left(\sum_{n=1}^{4} \Phi_{n}\right) \\
& \Phi_{\mathrm{WAP}}=\frac{A_{1} \Phi_{1}+A_{2} \Phi_{2}+A_{3} \Phi_{3}+A_{4} \Phi_{4}}{A_{1}+A_{2}+A_{3}+A_{4}}
\end{aligned}
$$

Phase on a quadrant diode?

cross coupling vanishes on a large single element detector - provided that
 the beam parameters are matched

http://dx.doi.org/10.1364/AO.53.003043

$$
\operatorname{LPS}\left(\alpha, \Delta z_{0}, \Delta z\right) \approx \frac{\alpha^{2}}{k}\left(\frac{z}{4 z_{0}}+\Delta z_{0} \frac{2 k z_{0}\left(z_{p}+z\right)-z}{8 z_{0}^{2}}+\Delta z \frac{k\left(\left(z+z_{p}\right)^{2}-z_{0}^{2}\right)+z_{0}}{8 z_{0}^{2}}\right)
$$

Phase on a quadrant diode?

cross coupling vanishes

 on a large single element detector - provided thatthe beam parameters are matched
http://dx.doi.org/10.1364/AO.53.003043

$$
\operatorname{LPS}\left(\alpha, \Delta z_{0}, \Delta z\right) \approx \frac{\alpha^{2}}{k}\left(\frac{z}{4 z_{0}}+\Delta z_{0} \frac{2 k z_{0}\left(z_{p}+z\right)-z}{8 z_{0}^{2}}+\Delta z \frac{k\left(\left(z+z_{p}\right)^{2}-z_{0}^{2}\right)+z_{0}}{8 z_{0}^{2}}\right) \frac{e_{2}}{200} \frac{3}{\infty}
$$

$$
\approx 10^{-7}
$$

[^0] *Correspoonding Hannover, Callinster n Institute) and
Received 27 Februar

Phase on a quadrant diode?

cross coupling vanishes

 on a large single element detector - provided thatthe beam parameters are matched
http://dx.doi.org/10.1364/AO.53.003043

$\operatorname{LPS}\left(\alpha, \Delta z_{0}, \Delta z\right) \approx \frac{\alpha^{2}}{k}\left(\frac{z}{4 z_{0}}+\Delta z_{0} \frac{2 k z_{0}\left(z_{p}+z\right)-z}{8 z_{0}^{2}}+\Delta z \frac{k\left(\left(z+z_{p}\right)^{2}-z_{0}^{2}\right)+z_{0}}{8 z_{0}^{2}}\right)$

$$
\approx 10^{7}
$$

Phase on a quadrant diode?

cross coupling vanishes

 on a large single element detector - provided thatthe beam parameters are matched
http://dx.doi.org/10.1364/AO.53.003043

$$
\left.\operatorname{LPS}\left(\alpha, \Delta z_{0}, \Delta z\right) \approx \frac{\alpha^{2}}{k}\right)\left(\frac{z}{4 z_{0}}+\Delta z_{0} \frac{2 k z_{0}\left(z_{p}+z\right)-z}{8 z_{0}^{2}}+\Delta z \frac{k\left(\left(z+z_{p}\right)^{2}-z_{0}^{2}\right)+z_{0}}{8 z_{0}^{2}}\right)
$$

$$
\approx 10^{-14}
$$

Phase on a quadrant diode?

cross coupling vanishes

 on a large single element detector - provided that the beam parameters are matchedhttp://dx.doi.org/10.1364/AO.53.003043
$\begin{aligned} & \operatorname{LPS}\left(\alpha, \Delta z_{0}, \Delta z\right) \approx\left(\frac{\alpha^{2}}{k}\right)\left(\left(\frac{z}{4 z_{0}}\right)+\Delta z_{0} \frac{2 k z_{0}\left(z_{p}+z\right)-z}{8 z_{0}^{2}}+\Delta z \frac{k\left(\left(z+z_{p}\right)^{2}-z_{0}^{2}\right)+z_{0}}{8 z_{0}^{2}}\right) \\ & \approx 1\end{aligned}$

Phase on a quadrant diode?

cross coupling vanishes on a large single element detector - provided that
the beam parameters are matched

http://dx.doi.org/10.1364/AO.53.003043

Tilt-to Length Coupling

- Angular jitter of Test Mass or Spacecraft
\rightarrow beam walk on photodiode
\rightarrow pathlength noise
- LISA Pathfinder: noise reduction by subtraction
- (e)LISA:
- subtraction AND
- imaging of critical planes to PD planes

Tilt-to Length Coupling

- Angular jitter of Test Mass or Spacecraft
\rightarrow beam walk on photodiode
\rightarrow pathlength noise
- LISA Pathfinder: noise reduction by subtraction
- (e)LISA:
- subtraction AND
- imaging of critical planes to PD planes

Tilt to Length Coupling Reduction

- Imaging \rightarrow reduction of phase noise?

- issues:
- alignment
- beam parameter mismatch

Beam propagation

- Ray tracing
- Gaussian beams
- q-parameter propagation
- general astigmatism accounted for experiment simulation

$z=13.5 \mathrm{~cm}, \varphi_{w}=70.7^{\circ}$
$z=7.5 \mathrm{~cm}, \varphi_{w}=50.6^{\circ}$

$19.5 \mathrm{~cm}, \varphi_{w}=102.5$

$z=5.5 \mathrm{~cm}, \varphi_{w}=39$

Beam propagation with defraction

Non-Gaussian beams: Top Hats, Fibre modes, ...

- FFT-propagation
distance between aperture and QPD 0 mm

distance between aperture and QPD 5.5 mm

distance between aperture and QPD 11 mm

Beam propagation

Non-Gaussian beams: Top Hats, Fibre modes, ...

- FFT-propagation
- Mode Expansion Method:

Expansion of fields in higher order Hermite-Gaussian or Laguerre-Gaussian modes

Fibre mode propagation

Propagation of Fibre Mode $L P_{01}$

Intensity pattern at the end-face of the curved Interface

courtesy: Christoph Mahrdt

Optimizing interferometers

- Optimize
- optimal beam overlap on beam combiners and photo diodes
- least clipping
- equal arm lengths
- low stray light
- space
- Example: Hexagon Interferometer
- optimization with wedged beam splitters
- auto-alignment

Thank Yoú for your Attention

[^0]: Planck Institute for Gravitational Phnner ${ }^{*}$ and Gerhard Heinzel
 Physics of the Leibniz

