Albert Einstein Institute

Max Planck Institute for Gravitational Physics and Leibniz Universität Hannover

Low noise laser interferometer design using lfoCAD

<u>Gudrun Wanner</u>, Christoph Mahrdt, Vitali Müller, Sönke Schuster, Gerhard Heinzel and Karsten Danzmann

http://www.geo600.uni-hannover.de/ifocad/

We gratefully acknowledge support by the **European Space Agency** (ESA) (22331/09/NL/HB, 16238/10/NL/HB) and the **German Aerospace Center** (DLR) (500Q0601, 500Q1301) and thank the German Research Foundation for funding the **Cluster of Excellence QUEST** (Centre for Quantum Engineering and Space-Time Research).

Albert Einstein Institute

Max Planck Institute for Gravitational Physics and Leibniz Universität Hannover

Low noise laser interferometer design using lfoCAD

- C/C++ Library for laser interferometer design and optimization
- public C version (→ google), C++ version on request
- developed at AEI since ~2010
- features
 - propagation of various beam types (Gaussian beams incl. higher order; general astigmatism; FFT-optics)
 - photodiode readout signals
 - optimization routines

Phase on a quadrant diode?
(
$$\Phi_1, A_1$$
)
(Φ_2, A_2)
(Φ_3, A_3)
(Φ_4, A_4)
 $\Phi_{LPF} = Arg\left(\sum_{n=1}^{4} A_n exp(i\Phi_n)\right)$
 $\Phi_{AP} = \frac{1}{4}\left(\sum_{n=1}^{4} \Phi_n\right)$
 $\Phi_{WAP} = \frac{A_1\Phi_1 + A_2\Phi_2 + A_3\Phi_3 + A_4\Phi_4}{A_1 + A_2 + A_3 + A_4}$

cross coupling vanishes on a large single element detector - provided that the beam parameters are matched

this is not intuitive...

8

Pbeam

Tilt to Length Coupling

- Angular jitter of Test Mass or Spacecraft
 - → beam walk on photodiode
 - → pathlength noise
- LISA Pathfinder: noise reduction by subtraction
- (e)LISA:
 - subtraction AND
 - imaging of critical planes to PD planes

Tilt to Length Coupling Reduction

Imaging \rightarrow reduction of phase noise?

Beam propagation boleang of the general assignatic Gaussian beam and Ray tracing Gaussian beams q-parameter propagation http://dx.doi.org/10.1364/AO.52.006030 • general astigmatism accounted for experiment simulation $z = 3.5 \text{ cm}, \varphi_w = 22.4^{\circ}$ $z = 5.5 \text{ cm}, \varphi_w = 40.3^{\circ}$ z = 7.5 cm, $\varphi_w = 52.1^\circ$ $z = 3.5 \text{ cm}, \varphi_w = 22.7^{\circ}$ $z = 5.5 \text{ cm}, \varphi_w = 39^{\circ}$ $z = 7.5 \text{ cm}, \varphi_w = 50.6^{\circ}$

 $z = 9.5 \text{ cm}, \varphi_w = 57.2^{\circ}$ $z = 11.5 \text{ cm}, \varphi_w = 65.2^{\circ}$ $z = 13.5 \text{ cm}, \varphi_w = 70.7^{\circ}$

 $z = 15.5 \text{ cm}, \varphi_w = 79.6^{\circ}$ $z = 17.5 \text{ cm}, \varphi_w = 92^{\circ}$ $z = 19.5 \text{ cm}, \varphi_w = 102.5^{\circ}$

z = 9.5 cm, $\varphi_w = 60^{\circ}$ z = 11.5 cm, $\varphi_w = 66.6^{\circ}$ z = 13.5 cm, $\varphi_w = 73.3^{\circ}$

z = 15.5 cm, $\varphi_w = 81.3^{\circ}$ z = 17.5 cm, $\varphi_w = 90.1^{\circ}$ z = 19.5 cm, $\varphi_w = 101.2^{\circ}$

courtesy: Evgenia Kochkina

Beam propagation with defraction

Non-Gaussian beams: Top Hats, Fibre modes, ... FFT-propagation

distance between aperture and QPD 0 mm

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

distance between aperture and QPD 5.5 mm

Beam propagation

Non-Gaussian beams: **Top Hats**, **Fibre modes, ...**

- FFT-propagation
- Mode Expansion Method: Expansion of fields in higher order Hermite-Gaussian or Laguerre-Gaussian modes

Top Hat beam

3

courtesy: Christoph Mahrdt

Fibre mode propagation

Propagation of Fibre Mode LP₀₁

courtesy: Christoph Mahrdt

Optimizing interferometers

• Optimize

- optimal beam overlap on beam combiners and photo diodes
- least clipping
- equal arm lengths
- low stray light
- space
- • • •

Example: Hexagon Interferometer

- optimization with
 wedged beam splitters
- auto-alignment

^{twitter.com/} LISAcommunity

g

www.elisascience.org