Albert Einstein Institute

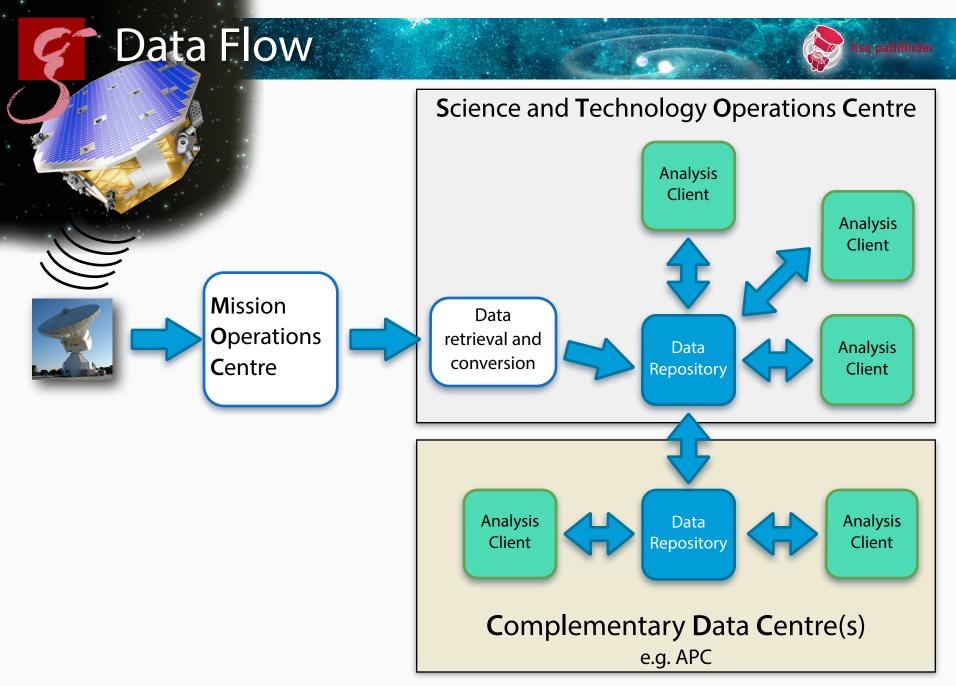
Max Planck Institute for Gravitational Physics and Leibniz Universität Hannover

LPF Data Analysis & Operations

Martin Hewitson for the LISA Pathfinder Team LISA Symposium X Gainesville, Florida May 20th 2014

We gratefully acknowledge support by the European Space Agency (ESA) (22331/09/NL/HB, 16238/10/NL/HB) and the German Aerospace Center (DLR) (500Q0601, 500Q1301) and thank the German Research Foundation for funding the Cluster of Excellence QUEST (Centre for Quantum Engineering and Space-Time Research).

Aims of operations


- Obtain the best geodesic motion possible
 - quietest differential acceleration of the two TMs
 - $3 \times 10^{-14} \text{ m s}^{-2} / \sqrt{\text{Hz}}$ at 1 mHz
 - pm accuracy position measurement of TM-SC, TM-TM
 - optimisation by changing system parameters
 - determine best configuration by experiments
- Develop a noise model of the system
 - allows the **projection** of the performance of technologies to LISA

Structure of Mission Operations

• LPF operations comprises many phases

Launch			IOCR													
Launch, LEOP, Transfer, Separation, De-spin					Ops	Com	DRS missioning	DRS Oper	ations							
60 days	14 da	ys		3 months		1	10 days	3 mon	ths							
							*********	********								
				Day 1	Day	/2	Day 3	Day 4								
		H	1	Noise	Disch	arge		Discharge								
		H	2	Run	Work	cina	Noise									
		H	3		Poi		Run	Stray								
		H4	4	Sys ID				Potentials								
		H	5	5,510												
	M Hewitson,	LISA Syı	mposiu	um X, Gainesv	∎ ville, May	/ 20th 2	2014		3							

Running Operations

- Each day has two data deliveries:
 - early morning (10am Z): Instrument Configuration & Evaluation data (ICE)
 - a few key channels of data to allow 'quick look'
 - late afternoon (6pm Z): Full data set
- We have one team on duty to perform the quick-look and planned STOC front-line analysis
- A team comprises:
 - A senior scientist
 - A scribe
 - 2 data analysts
 - Operations Scientist

Example shifts

Online: Perform quick look and planned front-line analyses Offline: Consolidate analysis and logbook from previous day Travel: Commute to/from STOC Off duty: Time at home

Day	Ν	N+1	N+2	N+3	N+4	N+5	N+6	N+7	N+8	N+9
Team 1	Online	Offline	Online	Offline	Travel	Off Duty	Off Duty	Travel	Online	Offline
Team 2		Online	Offline	Online	Offline	Travel	Off Duty	Off Duty	Travel	Online
Team 3					Online	Offline	Online	Offline	Travel	Off Duty
Team 4						Online	Offline	Online	Offline	Travel

Operational Constraints

- Investigations are time-line driven
 - no real-time / 'joystick' control
- Investigations are packed into 24 hour groups called Payload Operation Requests
- 6 days of time-line are on-board LPF at all times
- Changing a POR has a 3-5 day lead-time
- Mid- and long-term plans will be generated before launch

- 1. Start out with low-risk, gentle probing of the system first to gain experience and to understand the state of the system
- 2. Move on to more invasive investigations and begin tuning the system
- 3. Higher risk investigations are planned to be later in the operations

M Hewitson, LISA Symposium X, Gainesville, May 20th 2014

												Но	our											
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1 2	The Crosstalk Experiment: A way to estimate the cross-coupling noise in LISA Pathfinder														LISA- Pathfinder Optical Metrology System									
3	Daniele Vetrugno, Tuesday																							
4	CE	1	CE	Ξ2							Nork	king p	point	sca	n (x,	y,z),	both	ΤM	S					
5	CE	:1	CE	Ξ2						V I	ross-	talk	inve	stiga	tions	s, lov	v am	plitu	de					
6	CE	1	C	Ξ2								Ν	loise	e run	in S	ci 1.	2							
7	Station Keeping												Transition Acc3 -> Sci 1.2 FD1 FD2)2	

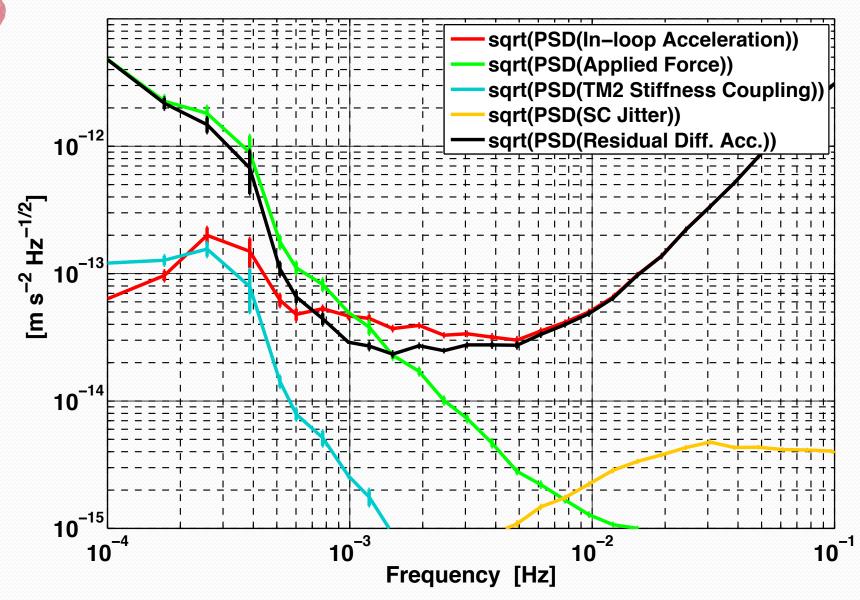
- This is our first interaction with the system
- The first two weeks are all about gathering information and gaining experience

Week 1: Gentle Probing

- SC following TM1
- TM2 following TM1
- Put the system in the 'best' state we know
 - discharged TMs
 - optimal dc compensation voltages
 - best test-mass working point for OMS and GRS
 - ...
- Take data for, e.g., 10 hours

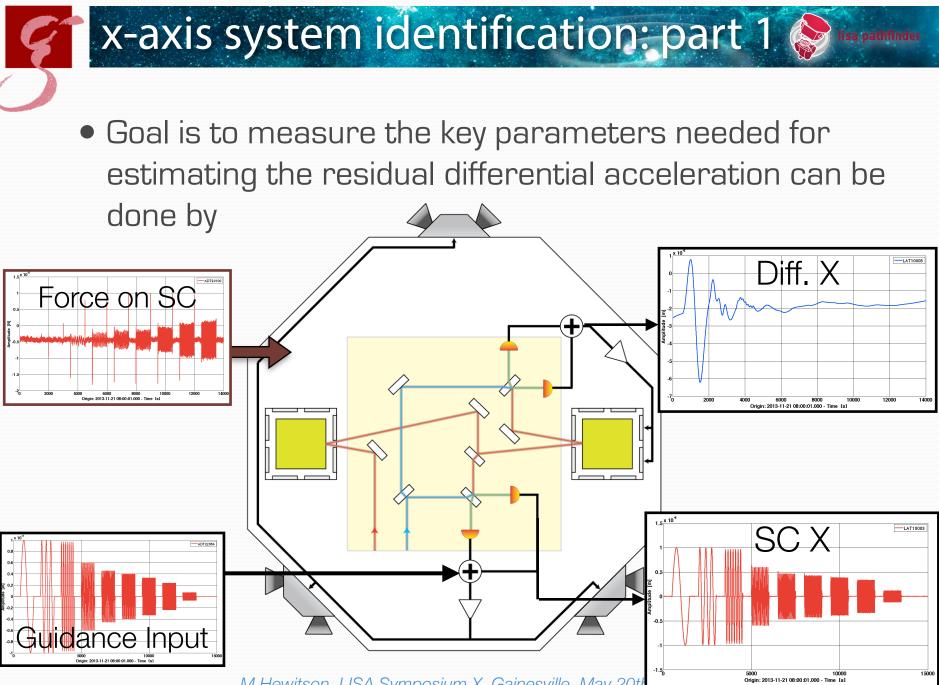
- Understanding the purity of the free-fall we achieve, and what limits it, requires us to assess the residual forces acting on the TMs
 - what's left when we subtract the forces we can account for
- We compute the relative acceleration of the two TMs based on the observed relative position

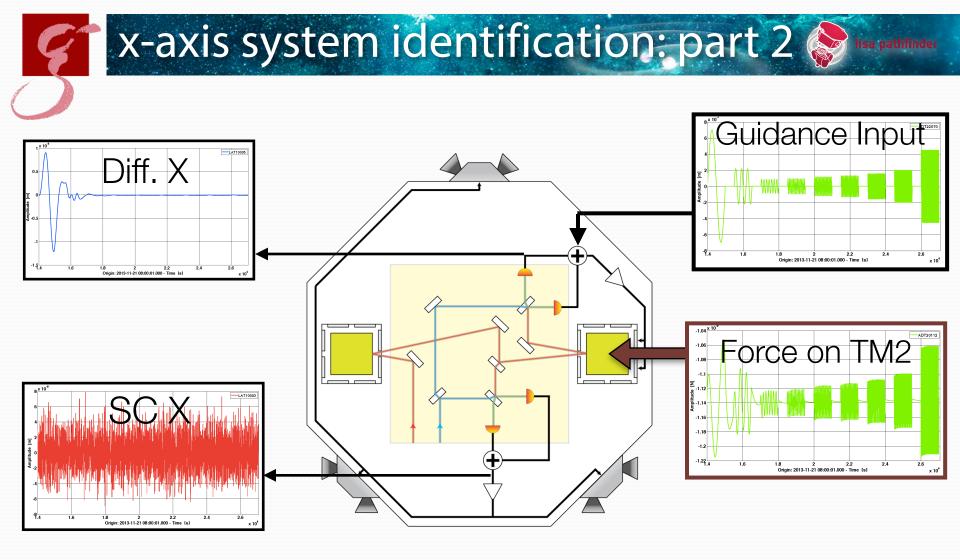
- Try to account for the contributions of g_res that we know
 - applied control forces $g_{res} = \dot{x_{12}}$ - $g_{control}$
 - couplings due to force gradients



 $-\omega_{\Delta}^2 x_1 - \omega_2^2 x_{12}$

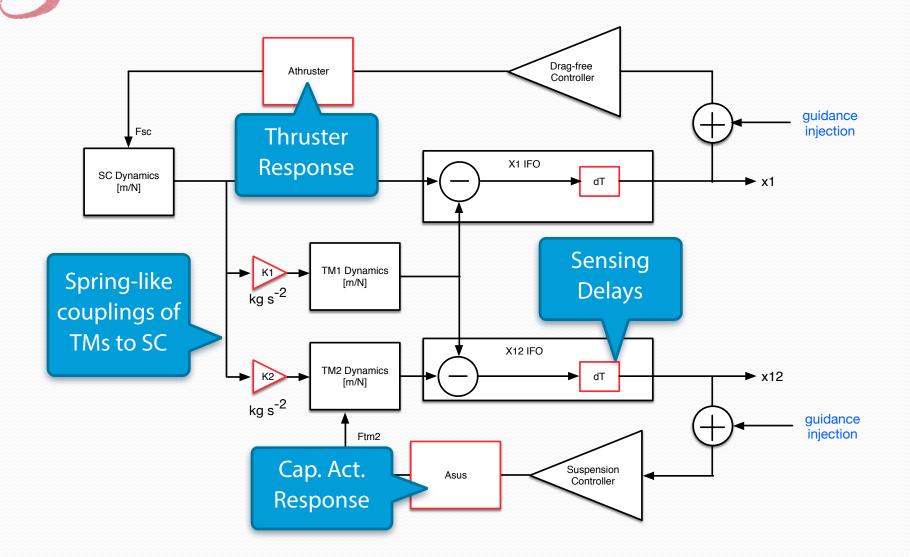
- 1. Download the time-series
- 2. Assemble the current best estimate of the required system parameters
 - actuator gains, delays, stiffnesses, ...
- 3. Form linear combination of the time-series
 - with delays, and filtering as necessary
- 4. Take spectrum of the residuals

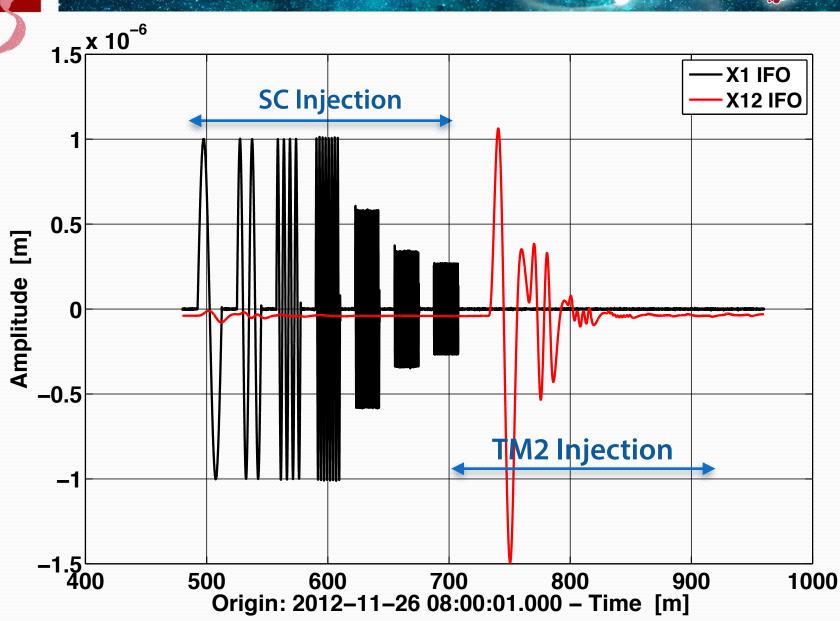



M Hewitson, LISA Symposium X, Gainesville, May 20th 2014

System Identification

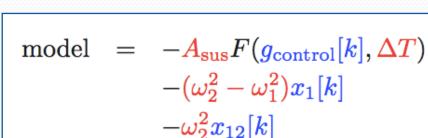
- Estimating our residual acceleration requires knowledge of certain system parameters
 - How do we gain that knowledge?
- At the beginning of operations, this comes from
 - ground measurements
 - system modelling
 - results of industrial commissioning campaign
- How do we improve and update that knowledge?
 - through dedicated investigations




M Hewitson, LISA Symposium X, Gainesville, May 20th

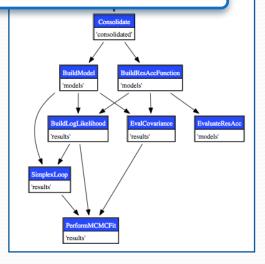
What do we learn from that?

The data

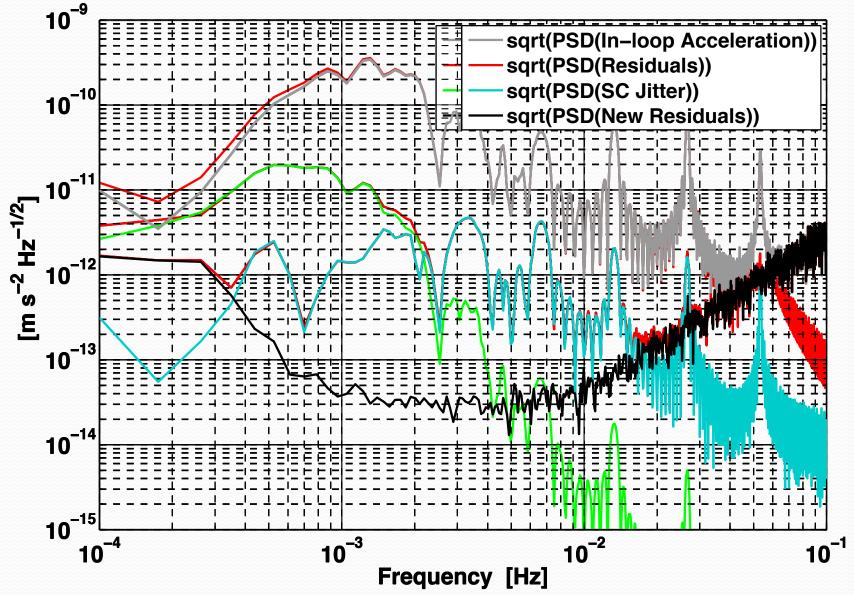

M Hewitson, LISA Symposium X, Gainesville, May 20th 2014

Analysis

- Follows the same form as for estimating residual differential acceleration
- But now the coefficients in the model are fit so that the linear combination of terms fit the observation
- When a good fit is found, the residuals contain no trace of the injected signals

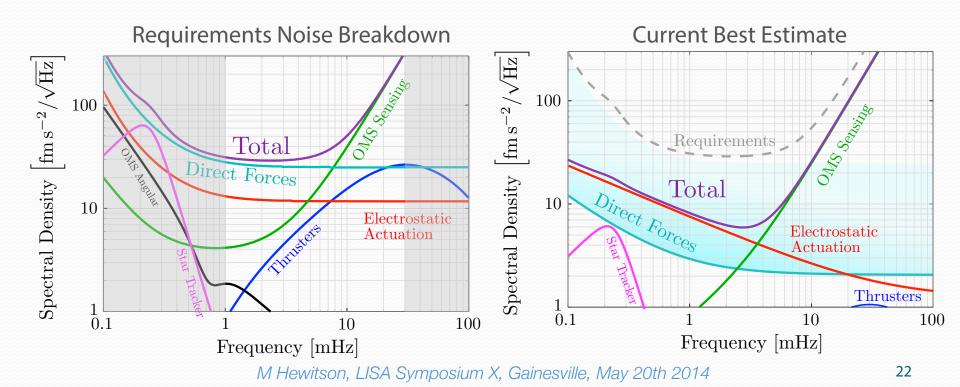

Fit

observation =
$$x_{12}[k]$$


Applying Bayesian Statistics to calibrate the LISA Pathfinder experiment

Nikos Karnesis, Tuesday

Residuals


M Hewitson, LISA Symposium X, Gainesville, May 20th 2014

A general scheme

- Balancing forces:
 - improves physical modelling and interpretation
 - simplifies the analysis a great deal
- This 'acceleration' scheme can be used for other contributions
 - cross-talk
 - thermal
 - magnetic
 - free-flight experiments

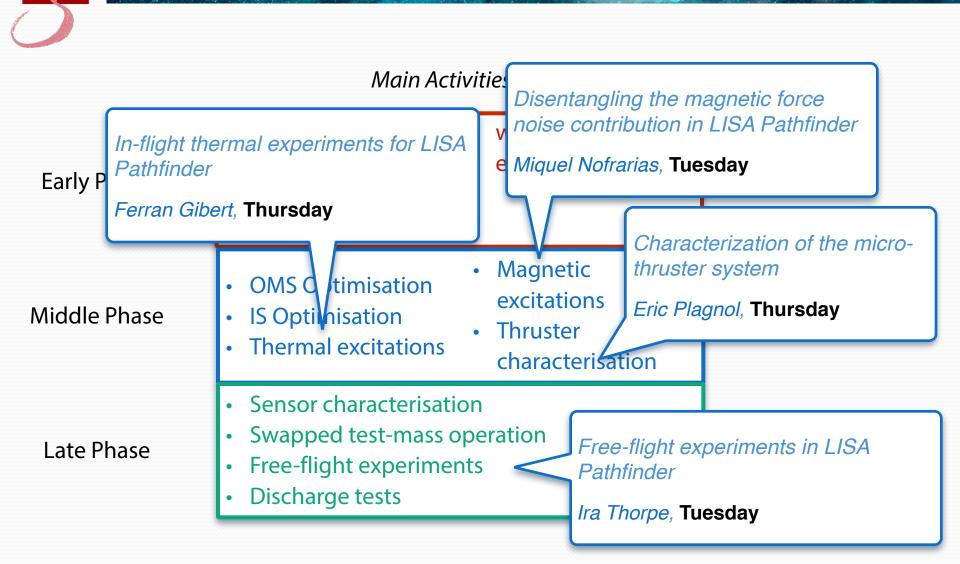
Noise Budget

- How does our observed residual differential acceleration differ from what we expect?
- Why does it differ?
 - this drives the next activities to be performed

Week 2: More Detailed Probing

- Focus on:
 - detailed system identification
 - state of TMs (stray potentials, charge)

	0	1	2	3	456789101112Measuring and mitigating electrostatic forces aboard LISA Pathfinder															
8		Noise run in Sci 1.2 Valerio Ferroni, Thursday															2			
9	Stray	Stray Potentials: Vscan (z) Stray Potentials: Vscan (y) Stray Potentials: Vscan (x) Noise run in Sci 1.2														.2				
10	C	C The Crosstalk Experiment: A way to estimate the cross-coupling noise in														Sys ID	2			
11				Pathfinder										Sys ID 5		Sys ID 6			Noise run in Sci 1.2	
12		Dani	ele ∖	/etru	gno,	Tue	esday	y	-			M2			CE1 Noise run in 1.2					
13	No	ise ru 1.	n in S 2	Sci							ross-t	alk in	vesti	gations, nominal an	nplitud	es				
14	Station Keeping													D1	FD2					


M Hewitson, LISA Symposium X, Gainesville, May 20th 2014

Week 3: Exploration of the system 🗞 🚥

- Long noise run to look at low frequencies
- Alternative DFACS operation modes
- More detailed cross-talk investigations

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
15										N	oise	run	in S	Sci 1	.2									
16										N	oise	run	in S	Sci 1	.2									
17	7CE1CE2Transition from Sci1.2 to Sci2.0Noise run in Sci2.0														.0									
18	B Sys ID 1 Sys ID 2 Match (Sci2) (Sci2) stiffness										Sys ID 3Sys ID 4(Sci2)(Sci2)								Sys ID 5 (Sci2)					
19	ξ	Sys (Sc	ID 6 i2)		CE	Ξ1	CE	Ξ2						N	oise	run	in S	Sci2	.0					
20					Cro	DSS-	talk	inve	stig	atio	ns, r	omi	nal	amp	olituc	les					CE	E1	CE	E2
21	Station Keeping												Transition Acc3 -> Sci 1.2 FD1 FI									FC)2	

M Hewitson, LISA Symposium X, Gainesville, May 20th 2014

Longer term plan

Elements and Capabilities

- Successful science operations requires many elements
 - Ground segment infrastructure
 - Data analysis tools
 - Investigation designs
 - Analysis pipelines
- We also need many capabilities of the system
 - **DFACS configuration**: modes, gains, offsets, actuation algorithms
 - Sensor configuration: TM bias levels, GRM modes, laser temperature, OMS heterodyne frequency, OMS loop states, alignment
 - Actuator configuration: gains, biases
 - **Signal injections**: guidances, forces, torques, electrode voltages, OMS loop set points
 - Environment: TM discharge, UV lamp control, CMS configuration, thermal excitation, magnetic field excitation

M Hewitson, LISA Symposium X, Gainesville, May 20th 2014

Where are we?

- Components
 - Ground segment infrastructure
 - mostly all in place, some testing remains
 - Data Analysis Tools
 - LTPDA Toolbox is mature
 - Investigation design
 - we have generated and tested a large number of investigations
 - Analysis Pipelines
 - many exist already
 - some to be developed over the next year
- Training
 - We've had 3 dedicated training sessions
 - next one in June
 - We ran 4 large-scale mission simulations
 - tested many of the investigation designs and analysis pipelines on synthesised data in realistic operational environment
 - Participation in industrial hardware test campaigns
 - exposure to real data

Concluding thoughts

- LPF Operations is a **complex** and demanding schedule
- Packed full of detailed investigations which will allow us to:
 - **optimise** the system to achieve best possible TM free-fall
 - develop a **detailed physical model** of the system
- This all paves the way for **commissioning** of a LISAlike mission
 - we must design in the necessary capabilities from the start!

Not long now!

122