

Outline

- LTP Optical Metrology System
 - Component parts
 - Main functions
- Requirements and constraints on its performance
 - Source of requirements
 - How they are met
 - Experimental results where possible
 - Modelling where direct ground testing impossible
 - Unexpected features and their solutions
- Summary of how well it performs

Optical Metrology System (OMS)

- Reference Laser Unit (RLU)
- Laser Modulator Unit (LM)
- Optical Bench Interferometer (OBI)
- PhaseMeter Unit (PMU)
- Data Management Unit (DMU)

Reference Laser Unit

Phasemeter

Optical Bench Interferometer

Laser Modulator

Data Management Unit

X12 interferometer

- Relative displacement between test mass 1 and test mass 2
 - X₁₂
- Relative angles between test mass 1 and test mass 2
 - Differential Wavefront Sensing (DWS)
 - $-\eta_{12}, \phi_{12}$

X1 interferometer

 Relative displacement between test mass 1 and the spacecraft

- X₁

Relative angles between test mass 1 and the spacecraft

 $-\eta_1, \phi_1$

Reference

Reference interferometer

- Provides reference phase against which other signals are compared
- Allows optical path length noise before the optical bench to be monitored
 - Relative path length noise between the two feed fibres can be controlled by feedback to actuators in the modulator unit (LM)

Frequency noise

Frequency noise interferometer

- Measure laser frequency noise
- Optical path unbalance to enhance sensitivity to laser frequency noise

Power monitor

Power monitor

 Monitor the optical power from each fibre feed

Beam Power Noise

Beam power noise

- Light beam onto test masses
- Direct force on test masses
- How to control laser power
 - Measure the noise
 - Allows subtraction from the data (OK)
 - Allows closed loop control (better)
 - Low noise laser (best)

Residual laser power noise against frequency with the requirement in **black**– In the **blue** curve the control system is switched off

Laser frequency noise

Laser frequency noise

- Laser frequency noise δv can cause apparent test mass displacement noise δx
 - Couples through path length mis-match ΔL
- Minimise effect by:
 - Well matched optical path lengths
 - Tracked during build matching which modelled the path length differences to be better than 10µm
 - Independent measurement gave upper limit of <100µm with a requirement of <1mm
 - Measure f-noise with frequency noise interferometer
 - Path length mismatch 382mm
 - Control laser frequency or subtract
 - Low noise laser
- Results extremely good see second last slide

 $\delta x = \Delta L \left| \frac{\delta v}{v} \right|$

Beam alignment onto test masses

- Why it matters
 - Geometrical piston effect
- OBI allowance is beam aligned to nominal point on test mass surface to better than +/-25µm
- How it is achieved
- Maintain alignment over thermal range
- Maintain alignment over launch and into operations

Results

Beam Alignment – out of plane

- Control the launch angle and height of beam launcher (FIOS)
- Target height at both test mass positions
 - Target error in H <15μm (achieved 10μm)
 - Target error in θ <30µrad (achieved 24µrad)
- Subsequent components must be extremely perpendicular
 - 90 degrees to 1 arc second

Optical alignment – in plane

Beam Alignment – in plane

- Control position and angle of critical components when bonding
 - Repeatability of positioning ~10nm
 - Accuracy ~2μm
- Critical components
 - Alignment onto test masses
 - Recombination beamsplitters
 - Optical path length matching

Flight Model	Y deviation (μm)	Z deviation (μm)
Test Mass1	-6	-15
Test Mass 2	-16	-7
Flight Spare	Y deviation (μm)	Z deviation (μm)
Flight Spare Test Mass1	Y deviation (μm) 15	Z deviation (μm) -4

Calibrated quadrant photodiodes

Calibrated quadrant photodiode assembly (CQP)

- Absolute measurement of beam position
 - Combined with a Coordinate Measuring Machine
 - Physical measurement with accuracy <2 μ m
 - Overall accuracy $4\mu m$ and $20\mu rad$

Improved CQP

OMS to test mass alignment

OBI alignment is only part of the story

- Maintain alignment form OBI to test masses – alignment chain:
 - Side slabs
 - Vacuum can
 - GRS electrode housing
 - GRS operating position

representative athermal I/F frame carrying the IFO test mirror assembly

SH Thermal

Optical Bench Assembly with Flight OBI

CA Strut Assembly nterfacing with S/C structure

Maintaining OBI alignment

Mounting of the OBI must be stress free

- Minimise mechanical stress in Zerodur
 - Structural safety
 - Minimise misalignments caused by distortion of the Zerodur OBI baseplate
 - These could cause misaligment of the beams onto the test masses
 - 1.7μm distortion(d) gives 37μm beam movement on photodiode PDRB

Monitor beam positions on photodiodes during critical parts of the integration

- Minimising beam movements minimises OBI distortion
- System used during assembly

Moving test masses

OMS's main aim is to measure the freely floating test masses

- Optical beams reflected from them will move with respect to the OBI
- Potential noise couplings
 - Not noise performance tested on ground
 - Check expected performance though modelling and characterisation

Why beam obscuration matters

- Two interfering wavefronts
 - Diode detects the signal integrated over the whole beam
- 1) Parallel wavefronts with dust particle obscuring part of the beam
 - Signal amplitude reduced, no phase effect
- 2) Angled wavefronts
 - Signal amplitude reduced, static phase offset
- 3) Angled wavefronts
 - Signal amplitude reduced, phase offset varies with wavefront angle
 - Effectively a tilt to piston coupling due to the OMS

Modelling

- Effect is zero if the contamination is centred on the interfering beams
- Maximum effect at a little under half a beam radius from beam centre
 - Set allowable contamination size of < $60\mu m$ for a particle in optimally bad position
 - 1pm/ \sqrt{Hz} noise allowance, TM angular noise 300nrad/ \sqrt{Hz}

Photodiode alignment

Photodiode alignment

- Diameter 5mm
- Inter-quadrant gap 45 μm
 - Acts like a linear dust particle
 - Photodiode must be centred on interfering beams to <33 μm
 - 1pm noise allowance, TM angular noise 300nrad/√Hz

Composite image of an LTP InGaAs quadrant photodiode taken with an optical CMM

Photodiode alignment

LPF photodiode alignment

 All just about within specification on the moving beam interferometers

Aligning photodiodes onto the Flight Spare optical bench

	X(mm)	Y(mm)	
PD12A	8	0	
PD12B	12	37	
PD1A	12	3	
PD1B	-5	-5	
PDRA	-13	-6	
PDRB	58	89	
PDFA	21	-29	
PDFR	8	-13	

Moving beam interferometers

Fixed beam interferometers

	Angle
Photodiode	(degrees)
PD12A	-0.17
PD12B	-0.08
PD1A	-0.26
PD1B	-0.19
PDRA	0.05
PDRB	-0.02
PDFA	-0.22
PDFB	0.05

Photodiode angular rotation Target <0.5 degrees

Photodiode non-uniformity

Flight QPDs are InGaAs

- Uniformity of response measured by scanning beam
- Effect of non-uniformity is similar to a diffuse dust particle₀₀
- Flight model QPDs very uniform response
- Very sharp division between quadrants
- Tilt to piston marginally better than "ideal" QPD

On Station Thermal Test Results

On Station Thermal Tests

- Full optical metrology system
- Static dummy mirrors in place of test masses
- Overall performance exceeded expectations

LPF Spacecraft being prepared for OSTT campaign

Longitudinal performance

Coupling of out of band noise

Out of band noise can couple to OMS measurements

- Amplitude noise
- Phase noise
- Coupling can be minimised by moving test masses longitudinally to an optimum operating point
 - Test mass movements of $<\lambda$
- Effect seen in OSTT data
- See "Optimising Test Mass Position for the LISA-Pathfinder Optical Metrology System" by Andreas Wittchen on Thursday afternoon

Noise coupling with test Mass position - See Andreas Wittchen's presentation for full details

Differential Wavefront Sensing

LTPDA 2.6 (R2013a) 2013-06-27 12:30:27.056 UTC Rpda: 1759108 iplot

27

University of Glasgow Longitudinal performance–control loops off

28

Conclusions

- LTP OMS technology fully integrated into LPT core assembly
- Building the LTP OMS has exercised many components, technologies and systems relevant to LISA local interferometry
- Testing at component and system level vary satisfic or AWESOME!
 - Static noise performance
 - Noise coupling measurements
 - Performance meets or exceeds goals
 - Some interesting features
 - Strategies to deal with them in place
- Now needs tested on orbit!