


Outline 

Outline 
l LTP Optical Metrology System 

– Component parts 
– Main functions 

l Requirements and constraints on its performance 
– Source of requirements 
– How they are met 

•  Experimental results where possible 
•  Modelling where direct ground testing impossible 
•  Unexpected features and their solutions 

l Summary of how well it performs 

2 



OMS Outline 

Optical Metrology System 
(OMS) 
l Reference Laser Unit (RLU) 
l Laser Modulator Unit (LM) 
l Optical Bench Interferometer (OBI) 
l PhaseMeter Unit (PMU) 
l Data Management Unit (DMU) 
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X12 
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X12 interferometer 
l Relative displacement between test mass 1 and 

test mass 2 
–  x12 

l Relative angles between test mass 1 and test 
mass 2 

– Differential Wavefront Sensing (DWS) 
– η12, φ12	




X1 
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X1 interferometer 
l Relative displacement between test mass 1 and 

the spacecraft 
–  x1 

l Relative angles between test mass 1 and the 
spacecraft 

– η1, φ1	




Reference 
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Reference interferometer 
l Provides reference phase against which other 

signals are compared 
l Allows optical path length noise before the 

optical bench to be monitored 
– Relative path length noise between the two 

feed fibres can be controlled by feedback to 
actuators in the modulator unit (LM) 



Frequency noise 
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Frequency noise interferometer 
l Measure laser frequency noise 
l Optical path unbalance to enhance sensitivity to 

laser frequency noise 



Power monitor 
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Power monitor 
l Monitor the optical power from each 

fibre feed 



Beam Power Noise 

Beam power noise 
l Light beam onto test 

masses 
l Direct force on test masses 
l How to control laser power 

– Measure the noise 
•  Allows subtraction 

from the data (OK) 
•  Allows closed loop 

control (better) 
–  Low noise laser (best) 
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Residual laser power noise against frequency with the 
requirement in black– In the blue curve the control system is 

switched off 



Laser frequency noise 

Laser frequency noise 
l Laser frequency noise δν can cause apparent test 

mass displacement noise δx 
– Couples through path length mis-match ΔL 

l Minimise effect by: 
– Well matched optical path lengths 

•  Tracked during build matching which modelled 
the path length differences to be better than 
10µm 

•  Independent measurement gave upper limit of 
<100µm with a requirement of <1mm 

– Measure f-noise with frequency noise 
interferometer 

•  Path length mismatch 382mm 
•  Control laser frequency or subtract 

–  Low noise laser 
l Results extremely good – see second last slide 10 
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Beam Alignment 

Beam alignment onto test 
masses 
l Why it matters 

– Geometrical piston effect 
l OBI allowance is beam aligned to 

nominal point on test mass surface to 
better than +/-25µm	


l How it is achieved 

l Maintain alignment over thermal range 
l Maintain alignment over launch and 

into operations 

l Results 
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Optical alignment – out of plane 

Beam Alignment – out of plane 
l Control the launch angle and height of beam launcher (FIOS) 
l Target height at both test mass positions 

– Target error in H <15µm (achieved 10µm) 
– Target error in θ<30µrad (achieved 24µrad) 

l Subsequent components must be extremely perpendicular 
–  90 degrees to 1 arc second  



Optical alignment – in plane 

Beam Alignment – in plane 
l Control position and angle of critical 

components when bonding 
– Repeatability of positioning ~10nm 
– Accuracy ~2µm  

l Critical components 
– Alignment onto test masses 
– Recombination beamsplitters 
– Optical path length matching 

Flight Model Y deviation (µm) 
 

Z deviation (µm) 
 

Test Mass1 
 

-6 -15 

Test Mass 2 -16 -7 

Flight Spare Y deviation (µm) 
 

Z deviation (µm) 
 

Test Mass1 
 

15 -4 

Test Mass 2 9 -1 

Alignment onto 
test masses 

Target was 
<25µm 



Calibrated quadrant photodiodes 

Calibrated quadrant photodiode assembly (CQP) 
l Absolute measurement of beam position  

– Combined with a Coordinate Measuring Machine 
•  Physical measurement with accuracy <2µm 
•  Overall accuracy 4µm and 20µrad 
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LPF 
CQP 

Improved CQP 



OMS to test mass alignment 
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OBI alignment is only part of the 
story     
l Maintain alignment form OBI to test 

masses – alignment chain: 
• Side slabs 
• Vacuum can 
• GRS electrode housing 
• GRS operating position 



Maintaining OBI alignment 
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Mounting of the OBI must be stress 
free 
l Minimise mechanical stress in Zerodur 

– Structural safety 
– Minimise misalignments caused by 

distortion of the Zerodur OBI baseplate 
•  These could cause misaligment of 

the beams onto the test masses 
•  1.7µm distortion(d) gives 37µm beam 

movement on photodiode PDRB 



Monitoring OBI distortion 
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Monitor beam positions on 
photodiodes during 
critical parts of the 
integration 
l Minimising beam movements 

minimises OBI distortion 
l System used during assembly 



Moving test masses 
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OMS’s main aim is to measure the 
freely floating test masses 
l Optical beams reflected from them will move 

with respect to the OBI 
l Potential noise couplings  

– Not noise performance tested on ground 
– Check expected performance though 

modelling and characterisation 



Beam obscuration and moving beams 

Why beam obscuration matters 
l Two interfering wavefronts  

– Diode detects the signal integrated over the 
whole beam 

l 1) Parallel wavefronts with dust particle obscuring 
part of the beam 

•  Signal amplitude reduced, no phase effect 
l 2) Angled wavefronts 

•  Signal amplitude reduced, static phase 
offset 

l 3) Angled wavefronts 
•  Signal amplitude reduced, phase offset 

varies with wavefront angle 
•  Effectively a tilt to piston coupling due to 

the OMS 
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Beam obscuration and moving beams 

Modelling 
l Effect is zero if the contamination is centred on the interfering beams 
l Maximum effect at a little under half a beam radius from beam centre 

– Set allowable contamination size of < 60µm for a particle in 
optimally bad position 

•  1pm/√Hz noise allowance, TM angular noise 300nrad/√Hz 
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Photodiode alignment 

Photodiode alignment 
l Diameter 5mm  
l Inter-quadrant gap 45 µm 

– Acts like a linear dust particle 
– Photodiode must be centred on interfering 

beams to <33 µm 
–  1pm noise allowance, TM angular noise 

300nrad/√Hz 
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Composite image of an LTP 
InGaAs quadrant photodiode 

taken with an optical CMM 



Photodiode alignment 

LPF photodiode alignment 
l All just about within specification 

on the moving beam 
interferometers 
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X(mm) Y(mm) 

PD12A 8 0 

PD12B 12 37 

PD1A 12 3 

PD1B -5 -5 

PDRA -13 -6 

PDRB 58 89 

PDFA 21 -29 

PDFB 8 -13 

Moving beam 
interferometers 

Fixed beam 
interferometers 

Aligning photodiodes onto the Flight Spare optical bench 

Photodiode 
angular 
rotation 

Target <0.5 
degrees 
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Photodiode non-uniformity 

Flight QPDs are InGaAs 
l Uniformity of response measured by scanning beam 
l Effect of non-uniformity is similar to a diffuse dust particle 
l Flight model QPDs very uniform response 
l Very sharp division between quadrants 
l Tilt to piston marginally better than “ideal” QPD 
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On Station Thermal Test Results 

On Station Thermal 
Tests 
l Full optical metrology system 
l Static dummy mirrors in place 

of test masses 
l Overall performance 

exceeded expectations 
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LPF Spacecraft being prepared for 
OSTT campaign 



Longitudinal performance 
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Coupling of out of band noise 

Out of band noise can couple to OMS 
measurements 
l Amplitude noise  
l Phase noise 
l Coupling can be minimised by moving test masses 

longitudinally to an optimum operating point 
– Test mass movements of <λ  

l Effect seen in OSTT data 

l See “Optimising Test Mass Position for the LISA-
Pathfinder Optical Metrology System” by Andreas 
Wittchen on Thursday afternoon 
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Noise coupling with test Mass position - See 
Andreas Wittchen’s presentation for full details 



Differential Wavefront Sensing 
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     OMS FM lab performance tests 



Longitudinal performance–control loops off 

28 

Run Number Power Loop Fast Frequency Slow Frequency OPD Loop 

1 Yes Yes Yes No 

2 Yes No No Yes 

TP6 Run #3 No Yes Yes Yes 

TP6 Run #1 Yes Yes Yes Yes 



Conclusions 

Conclusions 
l LTP OMS technology fully integrated into LPT core assembly 
l Building the LTP OMS has exercised many components, technologies and 

systems relevant to LISA local interferometry 
l Testing at component and system level very satisfactory 

– Static noise performance 
– Noise coupling measurements 
– Performance meets or exceeds goals 
– Some interesting features  

•  Strategies to deal with them in place 
l Now needs tested on orbit! 
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xxxxxx AWESOME! 


