Bayesian Statistics to calibrate the LISA Pathfinder experiment

Nikolaos Karnesis for the LTPDA team

http://gwart.ice.cat/

LISA Symposium X 20/05/2014

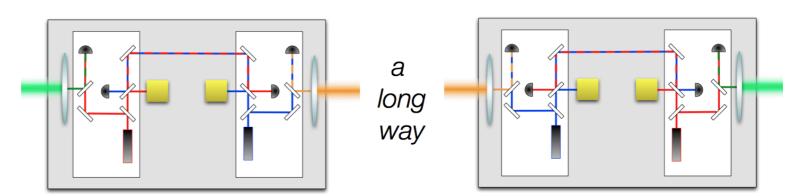
lisa pathfinder

Outline

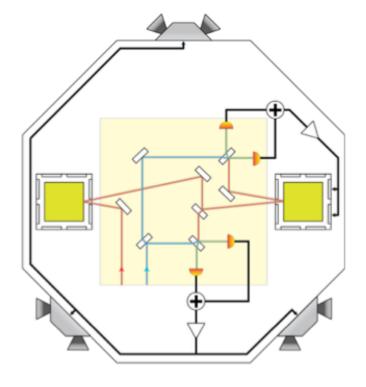
- LPF System Overview
- LPF System Identification Experiments
- Data Analysis framework
- Applications to Simulated Data
- The Pipeline Design for on-line analysis

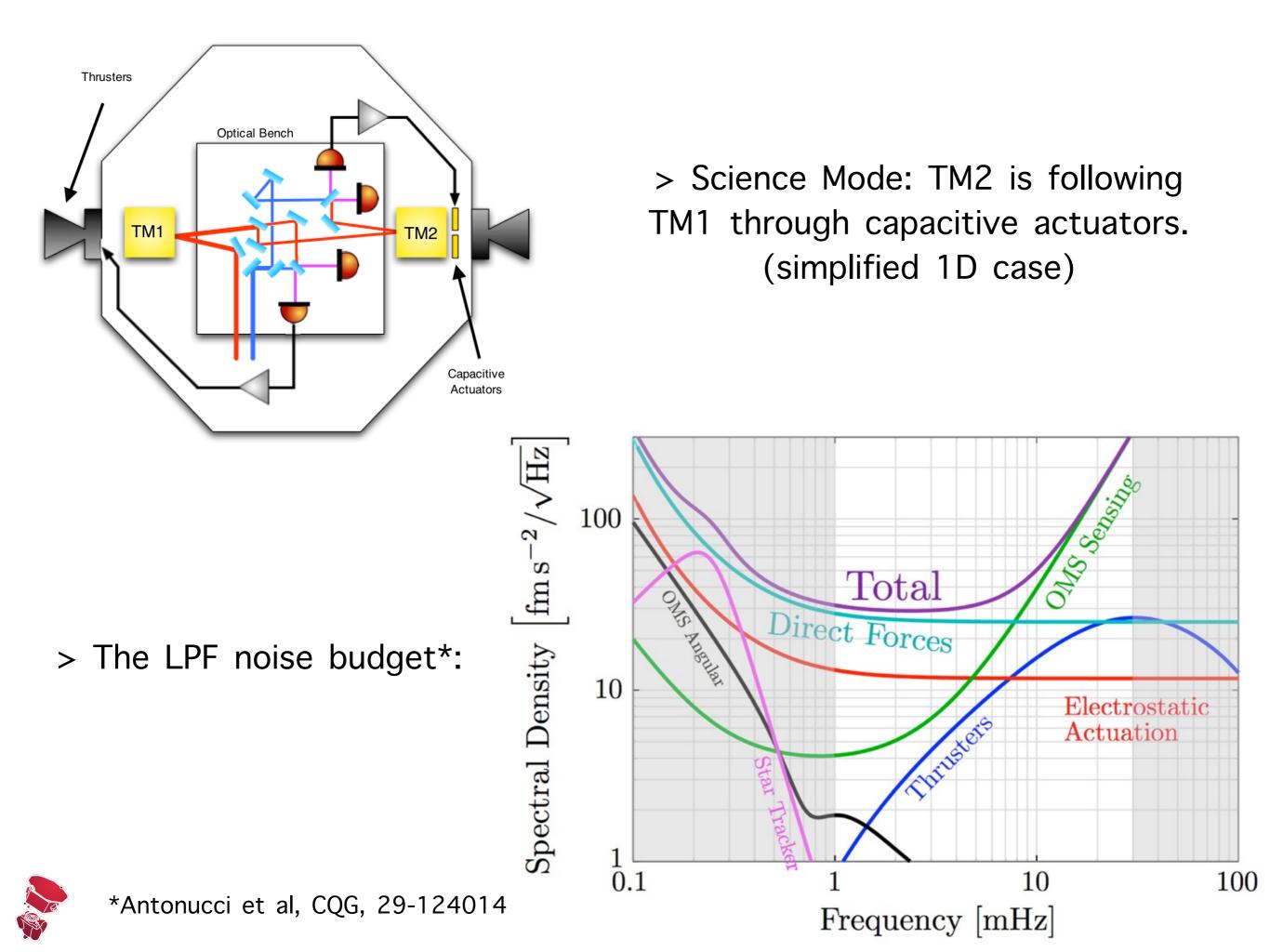
eLISA to LISA Pathfinder

- Prove geodesic motion by monitoring the relative acceleration of the two test masses.
- Characterise all noise sources of the instrument, build accurate noise models.
- Test all key technologies for the future space-based gravitational-wave detectors.



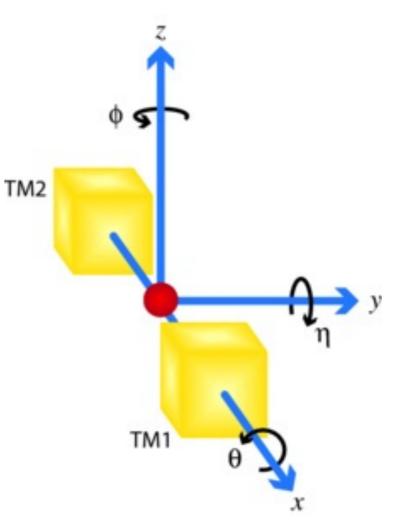
* Squeeze two eLISA SCs into one SC.



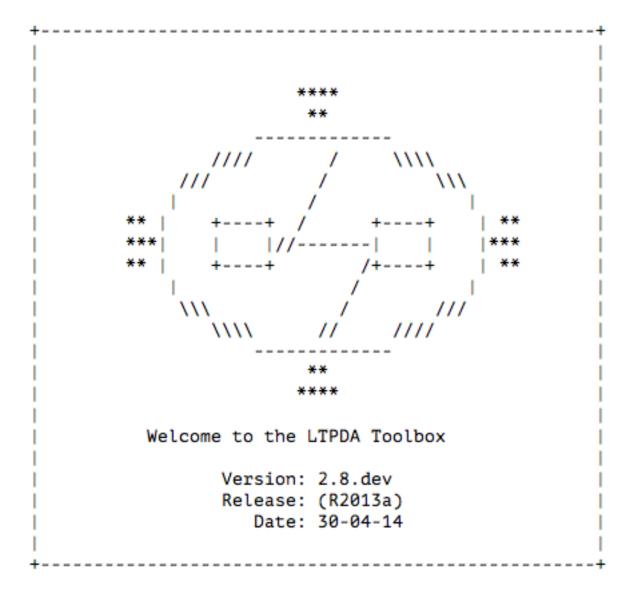


System Identification

- "Kick" the system, measure the response, get the system parameters.
- Two main dynamics sys-id experiment families:
 - X-axis
 - cross-talk



Data Analysis & Parameter Estimation



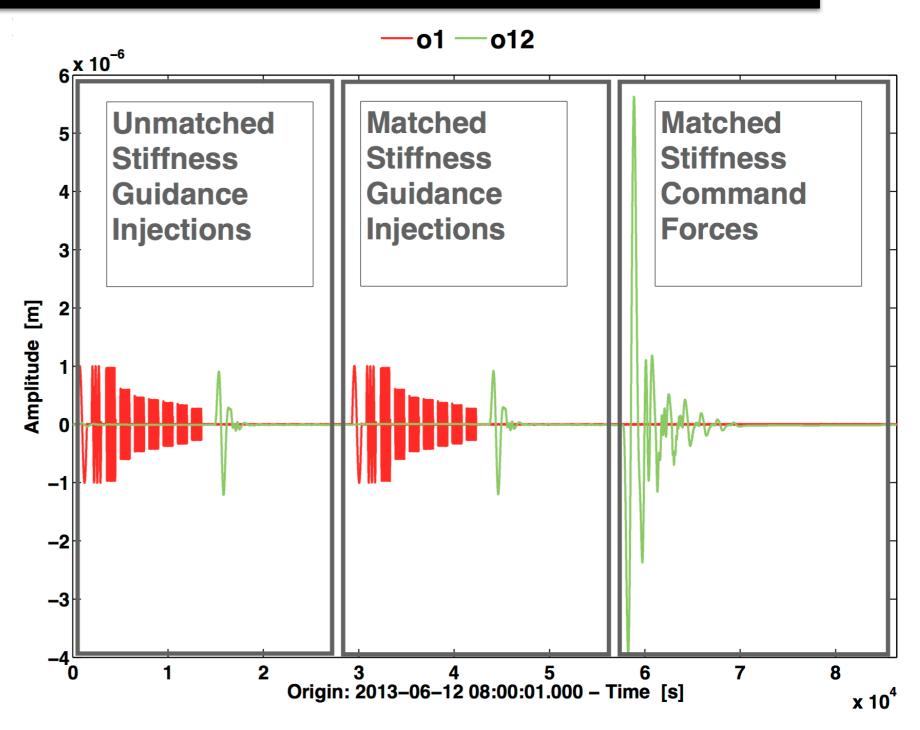
- LTPDA toolbox!
- It's there:

http://www.lisa.aei-hannover.de/ltpda/

 All the data analysis tools presented here are available in the toolbox with the proper documentation!

Sensitive x-axis system identification

- Command along the "sensitive" x-axis between the two testmasses
- Large signal-to-noise ratio, satisfactory recovery of the parameters.
- Three experiments:
 - 1. "fake displacement", unmatched stiffness.
 - 2. "fake displacement", matched stiffness.
 - Out-of-loop forces injections to the three bodies of the system.



Data Analysis & Parameter Estimation

• For the parameter estimation, the standard approach:

A. Assume that
$$ec{\mathbf{d}}=ec{\mathbf{h}}+ec{\mathbf{n}}$$

B. then
$$\pi(\vec{\mathbf{d}}|\vec{\theta}) = C \times exp[-1/2 \times \langle \vec{\mathbf{d}} - \vec{\mathbf{h}}(\vec{\theta})|\vec{\mathbf{d}} - \vec{\mathbf{h}}(\vec{\theta}) >]$$

where, $\langle \vec{a}|\vec{b} \rangle = 2 \int_{0}^{\infty} \left[\tilde{a}^{*}(f)\tilde{b}(f) + \tilde{a}(f)\tilde{b}^{*}(f) \right] / S_{n}(f)$

and $\chi^2 \equiv < \vec{\mathbf{d}} - \vec{\mathbf{h}}(\vec{\theta}) | \vec{\mathbf{d}} - \vec{\mathbf{h}}(\vec{\theta}) >$

C. Perform the fit using MCMC* methods.

- D. Also use linear•, or non-linear† methods.
- * PRD82, 122002, (2010), •CQG, 28 094006 (2011), †PRD85, 122004, (2012)

System identification along the x-axis

- Perform the fit in the "acceleration" domain.
- The model now, looks like:

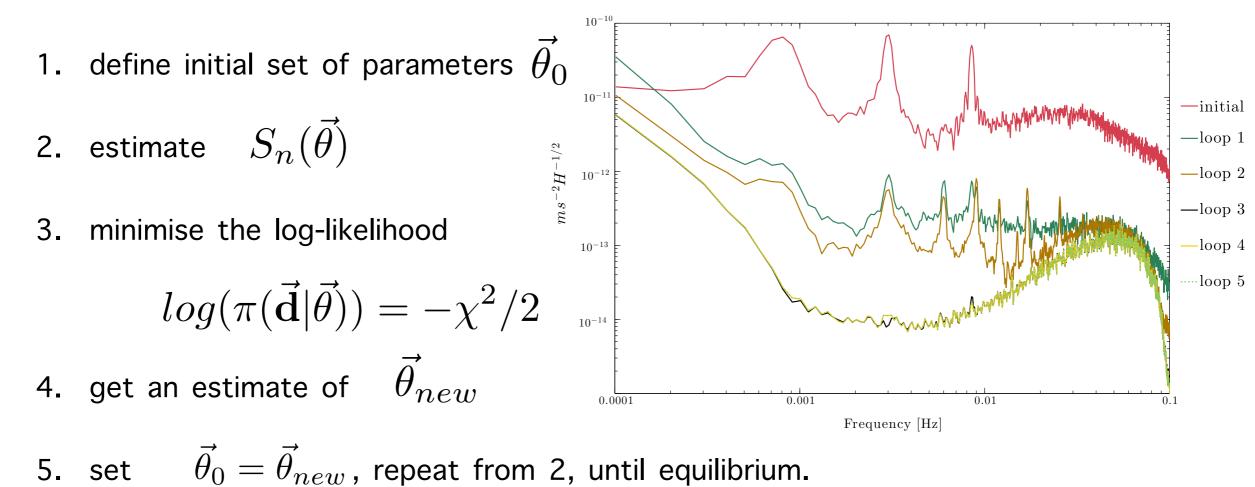
$$\Delta a = \sum_{j=1}^{N_g} \Delta g_j(\vec{\theta}) + \Delta g_{noise}$$

• And in particular, for the differential acceleration (x-axis):

$$\Delta a = \left[\frac{d^2}{dt^2} + \omega_2^2\right] x_{12}(t-\tau) + \left(\omega_2^2 - \omega_1^2\right) x_1(t-\tau) - AF_{cmd,TM2}$$

System identification along the x-axis: -iterative chi^2 method

- Given this equation we can now minimise the log-likelihood by following the following recipes:
 - A. Iterative chi2 minimisation:



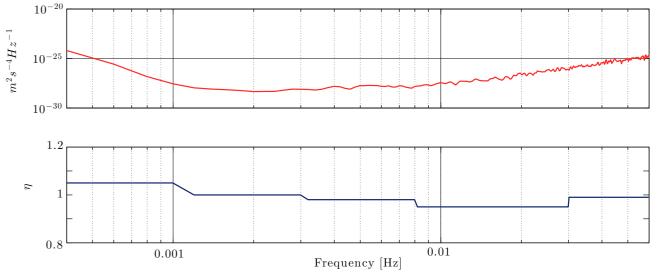
System identification along the x-axis: - By modelling the noise

B. Assume that the noise can be written as*

$$S_{n,i} \to \eta_j S_{n,i}, \quad i_j < i \le i_{j+1}$$

 $i \to bin, j \to segment$

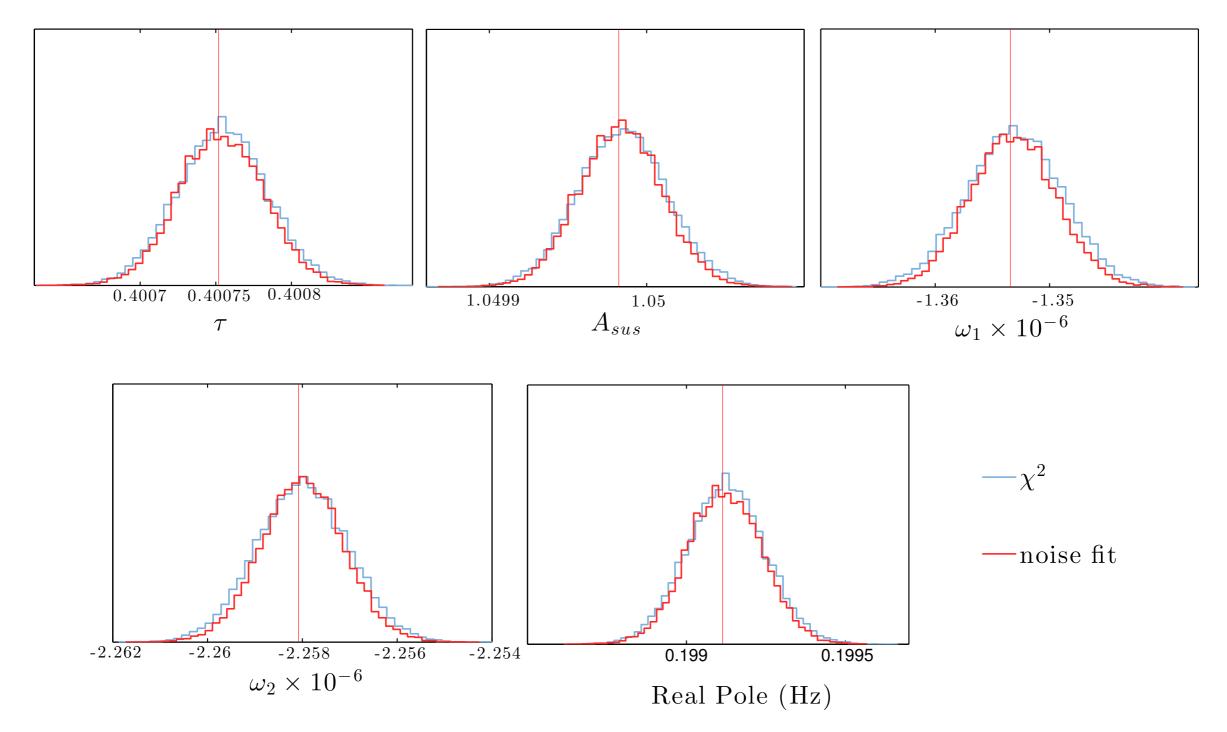
1. then define the log-likelihood function as



$$log(\pi(\vec{\mathbf{d}}|\theta)) = -1/2\left(\chi^2 + \sum_j N_j log(\eta_j)\right) + C$$

2. assign priors, sample the posterior.

* Littenberg et al, PRD80, 063007, 2009



comparison of the iterative chi^2 and the noise modelled log-likelihood resulting parameter estimates.

System identification along the x-axis: - Assuming unknown and unmodeled noise

C. Assume that all noise sources zero-mean and Gaussian. Also taking into account the spectral window properties, one can marginalise over the noise parameters[†].

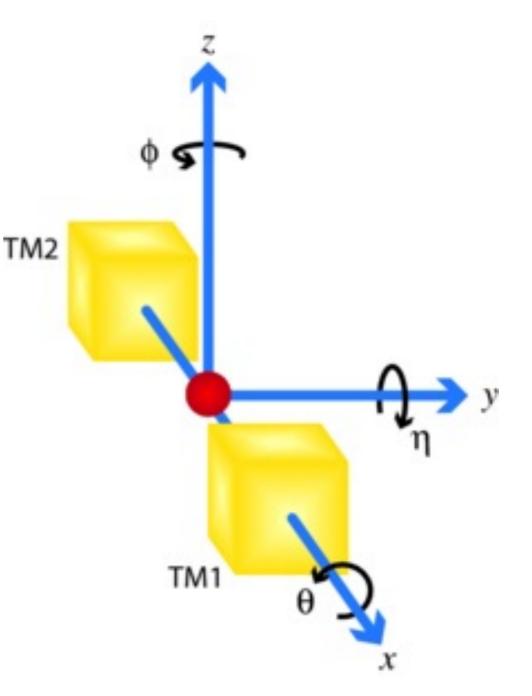
the log-likelihood then turns into

$$log(\pi(\vec{\theta}|\vec{\mathbf{d}})) = -N_s \sum_{k \in Q} \log\left(\left|\tilde{n}\left[k, \vec{\theta}\right]\right|^2\right)$$

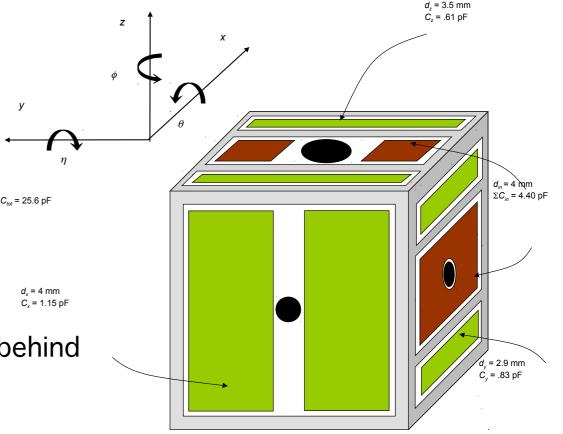
where, Q is the set of DFT coefficients and $\,\widetilde{n}$ the residuals.

*** See next talk from D. Vetrungo, for a more detailed explanation!

- Command forces and torques in different degrees of freedom (φ1, φ2, y1, y2, Φ).
- measure with the sensitive differential channel (o12).
- estimate cross-talk/cross-coupling coefficients.
- Lower resulting SNR.



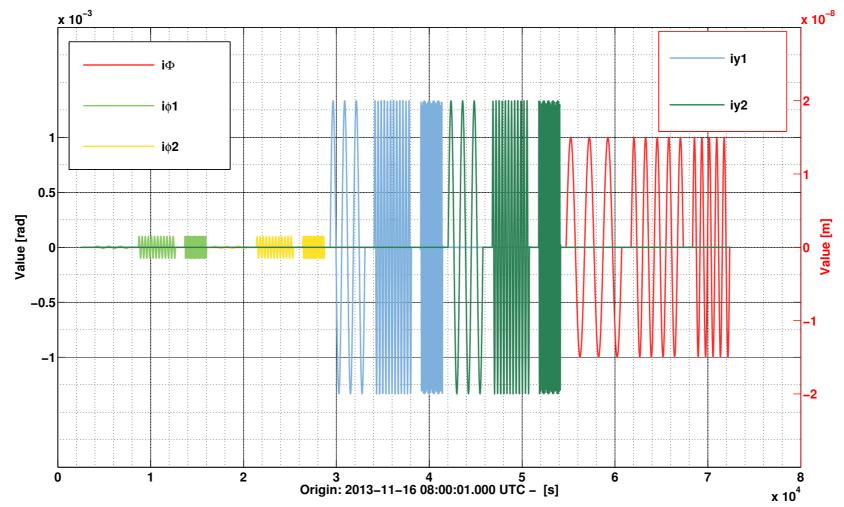
- The parameters to estimate in this case are:
 - 1. system parameters (gains, delays)
 - cross-talk terms (piston effects, mechanical imperfections, crossstiffness, secondary effects)
 - * See also, next talk by D. Vetrungo for the physics behind



L

CoM

- · Analysis of each experiment separately, or
- define a model that describes all the cross-coupling terms for all the cross-talk experiments



- Analyse each experiment separately: good understanding of physics for each injection case.
- Analyse the joint experiments: verify that all cross-talk terms are included in the dynamics model
 subtract total produced acceleration and reach the noise level.
- An example of the joint analysis model could be:

$$\begin{aligned} a_{12,ct} &= -\delta_{\ddot{\phi}_{1}}\ddot{\phi}_{1} - \delta_{\phi_{1}}\phi_{1} + \delta_{\ddot{\phi}_{1}^{2}}\ddot{\phi}_{1}^{2} \\ &+ \delta_{\Delta N\phi} \left(N_{cmd,\phi_{1}}(t-\tau) - N_{cmd,\phi_{2}}(t-\tau) \right) \\ &- \delta_{\ddot{\phi}_{2}}\ddot{\phi}_{2} - \delta_{\phi_{2}}\phi_{2} + \delta_{\ddot{\phi}_{2}^{2}}\ddot{\phi}_{2}^{2} \\ &- \delta_{\ddot{y}_{1}}\ddot{y}_{1} - \delta_{y_{1}}y_{1} - \delta_{\ddot{y}_{2}}\ddot{y}_{2} - \delta_{y_{2}}y_{2}. \\ &+ \delta_{\Delta N\theta} \left(N_{cmd,\theta_{1}}(t-\tau) - N_{cmd,\theta_{2}}(t-\tau) \right) \\ &+ \delta_{\Delta N\eta} \left(N_{cmd,\eta_{1}}(t-\tau) - N_{cmd,\eta_{2}}(t-\tau) \right) \\ &- \omega_{2}^{2}(x_{12} + x_{1}) + \omega_{1}^{2}x_{1} + A_{sus}F_{cmd,x_{2}}(t-\tau) \end{aligned}$$

	0			۲	۲	ŧ			۲	۲	۲	۲		۲	۲
		۲		۲		۲		۲	۲	٠	۲	O.		۲	۲
				1			-	•	ø	•	•	۲		1	1
						-	/								
							-			۲	۲	۲			
۲	۲			0		۲		۲	۲	۲	۲	۲		۲	۲
									/			/	-	•	
			/	-						۰				۲	
	٠	۲		-		۲			۲	۲	۲	۲		۲	۲
	۲		۲		۲	~	-	۱		۲	۲	/			
	۲	•	-	۲				۲	۲			۲	۲	٠	۲
-	۲			۲	۲		-	۲	٠			۲		٠	۲
	۲	۲		۲		N		۲		۲	۲			۲	۲
				۲										۲	۲
			ŧ			۲	-	٠		۲	٠	۲			1
		1		-				۲		٠	۲				

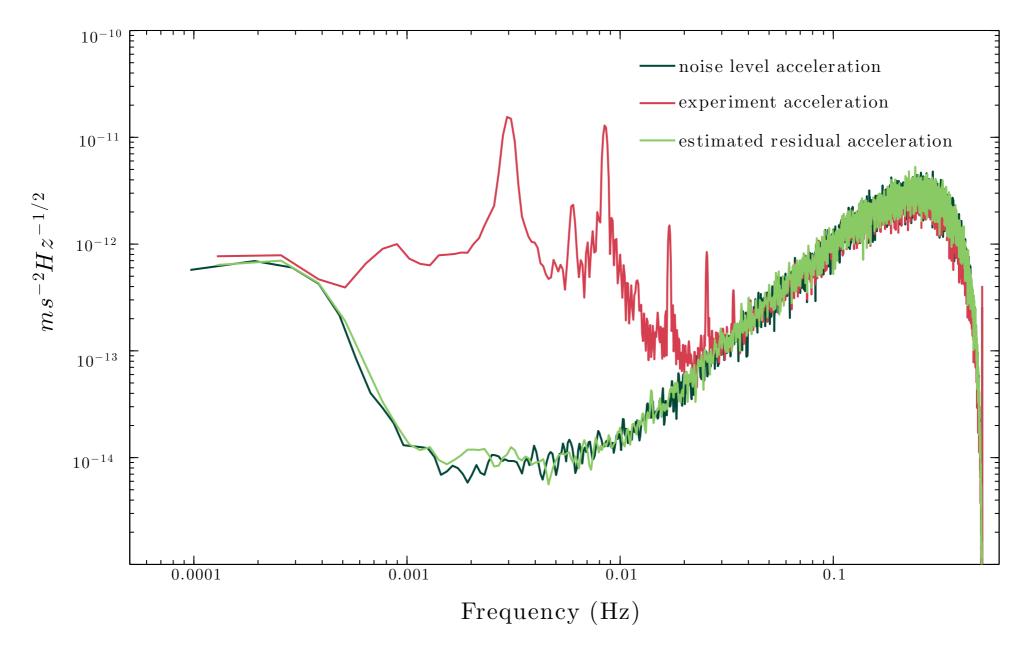
Sample the posterior with MCMC methods. Extract covariance/correlation matrices from the chains.

				param	initial guess value	estimated $\pm \sigma$					
				$\delta_{\ddot{\varphi}_1}$	$50 imes 10^{-6}$	$(1.370 \pm 0.002) \times 10^{-4}$			۲	۲	
			۲	δ_{φ_1}	$5 imes 10^{-10}$	$(-7.0\pm0.5) imes10^{-10}$			۲	۲	
		-		$\delta_{\ddot{\phi}_1^2}$	0.19	-0.190072 ± 10^{-6}	_			1	
	-			$\delta_{\Delta N \varphi}$	$18 imes 10^{-6}$	$(-1.7\pm2) imes 10^{-7}$			-	-	
		-	-	ω_2^2	$-2.42 imes 10^{-6}$	$-(2.1\pm0.1) imes10^{-6}$	_			1	
		۲		ω_1^2	-2.42×10^{-6}	$-(2.0\pm0.3) imes10^{-6}$			•		
			•	- τ	0.001	0.395 ± 0.002	_		•		
				δ _{φ₂}	0.19	$-(1.293 \pm 0.002) \times 10^{-4}$	_				
				δ _{φ2}	$-5 imes 10^{-7}$	$-(5.2\pm0.2) imes10^{-10}$	_		•	•	
				$\delta_{\ddot{\Phi}_2^2}$	0.1	-0.2301888 ± 10^{-7}	_		•	•	
				δ _{ÿ1}	10 ⁻⁴	$-(0.9\pm2) imes 10^{-5}$	_			۲	
		۲		δ _{y1}	10 ⁻⁴	$-(1.2\pm0.1) imes10^{-7}$	_		۲	۲	
				δ _{ÿ2}	5×10^{-5}	$(0.2\pm 0.6) imes 10^{-4}$			•		
				δ_{y_2}	10 ⁻⁴	$-(0.7\pm1) imes 10^{-7}$				1	
		۲	1	δΔΝθ	10 ⁻⁶	$-(7.5\pm0.8) imes10^{-5}$					
•	tha	noct	orior	$\delta_{\Delta N\eta}$	10 ⁻⁶	$-(0.8\pm0.5) imes10^{-5}$	2	loor		ion	matricas
e the posterior $[0\Delta N\eta]$ is $[0\Delta N\eta]$ is a correlation matri											nati ites

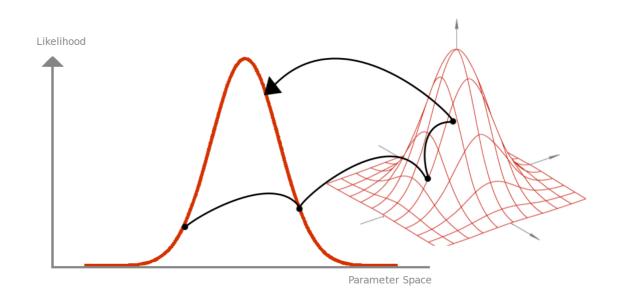
Sample the posterior

from the chains.

 For the given simulated data-set, the results are quite satisfying!



- Since the cross-talk experiment requires a high dimensionality model,
- and many physical effects contribute with very low SNR...
- we can apply other Bayesian techniques like the Reversible Jump MCMC to perform model selection*.
 - A generalised MCMC: allows transdimensional moves.
 - Directly calculates the Bayes factor (ratio of the "evidences" of the models)
 - Will most probably be used off-line.
 Other approximations (like the Laplace) can be put to use during operations.

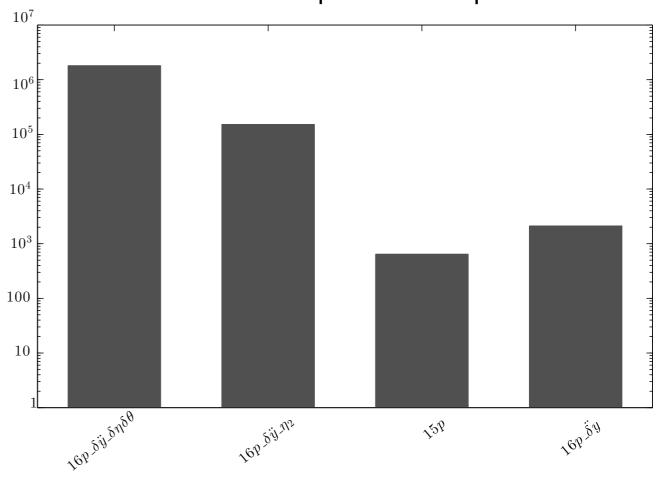


* Karnesis et al, PRD89, 062001, 2014

- · Since the cross-talk experiment requires a high dimensionality model,
- and many physical effects contribute with very low SNR...
- we can apply other Bayesian techniques like the Reversible Jump MCMC to perform model selection*.

Frequency

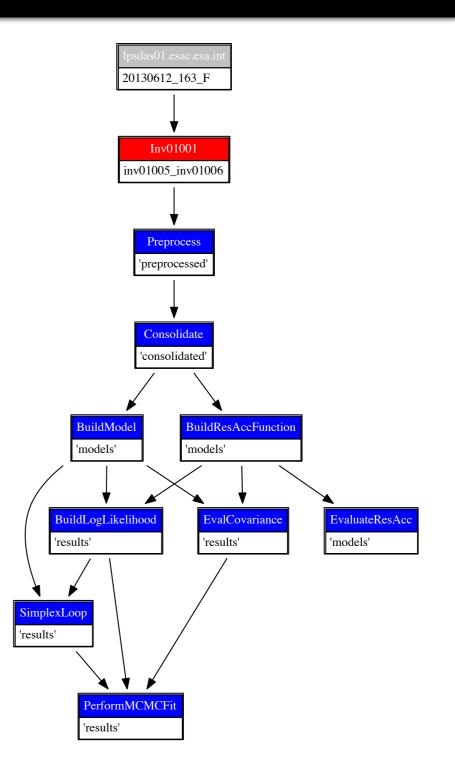
- A generalised MCMC: allows transdimensional moves.
- Directly calculates the Bayes factor (ratio of the "evidences" of the models)
- Will most probably be used off-line.
 Other approximations (like the Laplace) can be put to use during operations.



* Karnesis et al, PRD89, 062001, 2014

The Sys-ID Pipeline for on-line analysis

- This work presented here, is integrated in data analysis pipelines.
- The pipeline includes all analysis steps, from downloading the telemetry, to the submission of the analysis results.
- Can be modified/tuned/ configured by the user.
- Flexibility to adjust the model symbolic equation on the spot.



Summary

- We have developed a Bayesian tool to perform system identification/Model Selection for the LPF experiments.
- It has been integrated to data analysis pipelines.
- Already being tested systematically in numerous Simulations.
- Always improving/enhancing
- Getting ready for the launch!!!

Thank you! Questions?