

Optical Telescope Design Study Results

10th International LISA Symposium

Jeff Livas
20 May 2014

See also poster #19: Shannon Sankar

UF and GSFC

Telescope Design for a Space-based Gravitational-wave Mission

Outline

- Research program context
 - Study to answer key questions
 - Build a prototype based on the study
- Study Objectives and Approach
- Results
- Specific Trades
 - Stability
 - Stray light
 - Materials choice
 - Design form (on- vs off-axis)
 - Manufacturability
- Lessons learned

Project Objective and Approach

Objective:

To design, fabricate and test a telescope to verify that it meets the requirements for precision interferometric metrology for space-based gravitational-wave observatories.

Approach

- Develop a telescope design for a space-based gravitational wave mission (eLISA as initial target)
 - Meets technical requirements
 - Can be manufactured (need multiple (~ 10) copies)
 - TRL-5 by CY2018 (nominally may have been overcome by events)
- Demonstrate we can implement the design

Key challenging requirements

- Optical pathlength stability
- Scattered light performance
- Manufacturable design

PCOS (Physics of the Cosmos Cosmic Origins

Design Study Goals

- The purpose of the Study is to get experienced advice
- Key Questions
 - Can an on-axis design meet requirements? OR
 - Can an off-axis design (assumed to meet requirements) be manufactured?

Trade-off Summary

Design	WFE with temperature gradient	Scattered Light	Manufacturability (need 10)	
On-Axis	+	-	+	
Off-Axis	-	+	-	

- Deliverables (from Section 4.0 of the Statement of Work)
 - Complete mechanical, optical, and thermal design
 - Test plan for verifying and validating requirements
 - Manufacturing plan (need 10 identical telescopes), including schedule
 - ROM cost estimate with and without testing for 10 telescopes

DESIGN STUDY: SUMMARY AND RESULTS

Study Summary

Industrial Study Schedule

- 1 Nov 2012 Kicked off
- 17 Jan 2013 Mid term Technical Interchange Meeting (TIM)
- 11 April 2013 Final report (23 weeks)
- Original bid was 4 months (16 weeks)
- Not-to-exceed was 6 months (24 weeks)

Main results

- Off-axis design for stray light
 - Claim alignment and test similar for on- and off-axis designs (both complex)
- Silicon carbide structure to avoid schedule hit from composite outgassing
 - Composite more stable dimensionally due to CTE
 - SiC has lower RE cost
- ROM ground prototype
 - \$2.5M= \$1.58M RE + \$0.26M NRE + \$0.43M testing + \$0.22M focus mechanism
 - 16 months delivery

DESIGN STUDY: REQUIREMENTS AND BOUNDARY CONDITIONS

7

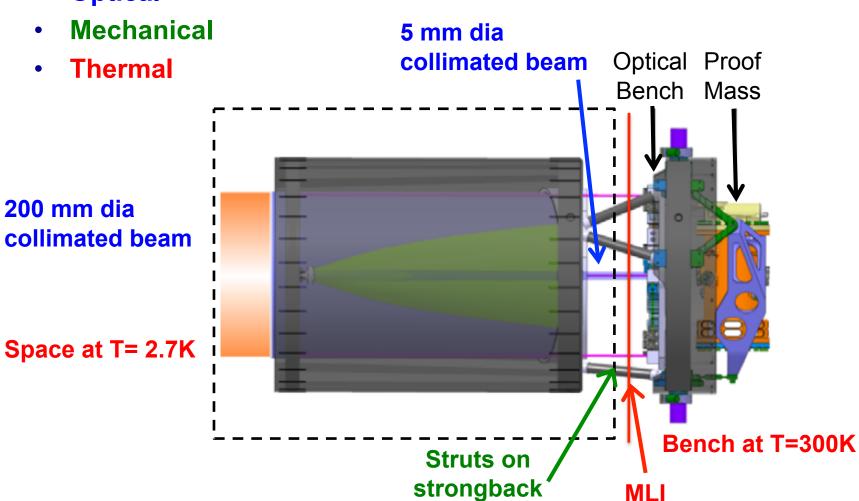
Telescope Requirements

1 Wavelength 1064 nm Net Wave front quality departure from a collimated beam of as built telescope subs system over Science field of regard under flight-like conditions Pointing ≤ λ/30 RMS 3 Field-of-Regard (Acquisition) Acquisition +/- 200 μrad (large aperture) 4 Field-of-Regard (Science) Orbits +/- 20 μrad (large aperture) 5 Field-of-Regard (Science) Stray light +/- 8 μrad (large aperture) 6 Science boresight FOV, pointing +/- 1 μrad (large aperture) 7 Telescope subsystem optical path length Noise/ Pointing stray light +/- 1 μrad (large aperture) 8 Afocal magnification short arm interferometer 200/5 = 40x (+/-0.4) 9 Mechanical length < 350 mm TBR 10 Optical efficiency (throughput) Shot noise >0.85 11 Scattered Light Displacement noise 10 of transmitted power into +/- 8 μrad Science FOV Interfaces: Received beam (large aperture, or sky-facing) 200 mm (+/- 2 mm) 12 Stop Diameter (D) (large aperture) Noise/ pointing 200 mm (+/- 2 mm) 13 Stop location (large aperture) Pointing Entrance of beam tube or p		Parameter	Derived From	eLISA/NGO		
from a collimated beam of as built telescope subs system over Science field of regard under flight-like conditions 3 Field-of-Regard (Acquisition)	1	Wavelength		1064 nm		
4 Field-of-Regard (Science) 5 Field-of-View (Science) 6 Science boresight Telescope subsystem optical path length stability under flight-like conditions 8 Afocal magnification 9 Mechanical length 10 Optical efficiency (throughput) Scattered Light Interfaces: Received beam (large aperture) Stop Diameter (D) (large aperture) Pointing Afocaling aperture) Path length Noise/Pointing Path length Noise/Pointing Path length Noise/Pointing Short arm interferometer Short arm interferometer Shot noise Optical efficiency (throughput) Shot noise 10 Optical efficiency (throughput) Scattered Light Displacement noise 12 Stop Diameter (D) (large aperture) Noise/pointing Stop location (large aperture) Pointing Pointing Entrance of beam tube or primary mirror Interfaces: Telescope exit pupil (small aperture, or optical bench-facing) 14 Exit pupil location Pointing Pointing Pointing 13.5 +/- 2 cm (on axis) behind primary mirror 15 Exit pupil diameter Optical bench SNR SNR SNR SNR	2	from a collimated beam of as built telescope subs system over Science field of regard under flight-like	Pointing	$\leq \lambda/30 \text{ RMS}$		
5 Field-of-View (Science) Stray light +/- 8 μrad (large aperture) 6 Science boresight FOV, pointing +/- 1 μrad (large aperture) Telescope subsystem optical path length 'stability under flight-like conditions 7 Path length Noise/Pointing ≤1pm/√Hz × √ $1 + (0.003)^4$ / $1 + (0.003)^4$		G \ 1	*			
6 Science boresight FOV, pointing $+/-1$ μrad (large aperture) Telescope subsystem optical path length 1 stability under flight-like conditions Path length Noise/Pointing $= 1pm/\sqrt{Hz} \times \sqrt{1+\left(\frac{0.003}{f}\right)^4}$ 8 Afocal magnification Short arm interferometer $= 200/5 = 40x (+/-0.4)$ 9 Mechanical length $= 350 \text{ mm TBR}$ 10 Optical efficiency (throughput) Shot noise $= 20.85$ 11 Scattered Light Displacement noise $= 10^{-10}$ of transmitted power into $= 10^{-10}$ o		• • • • • • • • • • • • • • • • • • • •	Orbits			
Telescope subsystem optical path length 1 stability under flight-like conditions Path length Noise/Pointing Path length Noise/Pointing where $0.0001 < f < 1 \text{ Hz}$ $1 \text{ pm} = 10^{-12} \text{ m}$ 8 Afocal magnification Short arm interferometer 9 Mechanical length Optical efficiency (throughput) Shot noise 10 Optical efficiency (throughput) Shot noise Displacement noise 11 Scattered Light Displacement noise 12 Stop Diameter (D) (large aperture) Noise/pointing Stop location (large aperture) Pointing Entrance of beam tube or primary mirror Interfaces: Telescope exit pupil (small aperture, or optical bench-facing) 14 Exit pupil location Pointing Pointing 13.5 +/- 2 cm (on axis) behind primary mirror 15 Exit pupil diameter Optical bench 5 mm (+/- 0.05 mm) 16 Exit pupil distortion SNR < SIDMAN (J.+ (0.003) ⁴ (1.+ (0.003		, ,	υ υ			
7 conditions Pointing Where 0.0001 < f < 1 Hz 1 pm = 10 ⁻¹² m 8 Afocal magnification Short arm interferometer 9 Mechanical length Optical efficiency (throughput) Shot noise 11 Scattered Light Displacement noise 12 Stop Diameter (D) (large aperture) Noise/pointing Stop location (large aperture) Pointing Pointing 13 Stop location (large aperture) Pointing Pointing 14 Exit pupil location Pointing Pointing Pointing 15 Exit pupil diameter Pointing SNR SNR SNR SNR SNR SNR SNR SNR	6	Science boresight	FOV, pointing	+/- 1 μrad (large aperture)		
8Afocal magnificationshort arm interferometer $200/5 = 40x (+/-0.4)$ 9Mechanical length $200/5 = 40x (+/-0.4)$ 10Optical efficiency (throughput)Shot noise >0.85 11Scattered LightDisplacement noise $< 10^{-10}$ of transmitted power into $+/-8$ µrad Science FOVInterfaces: Received beam (large aperture, or sky-facing) $< 10^{-10}$ of transmitted power into $+/-8$ µrad Science FOV12Stop Diameter (D) (large aperture)Noise/ pointing $< 200 \text{ mm} (+/-2 \text{ mm})$ 13Stop location (large aperture)PointingEntrance of beam tube or primary mirrorInterfaces: Telescope exit pupil (small aperture, or optical bench-facing)14Exit pupil locationPointing $13.5 +/-2 \text{ cm}$ (on axis) behind primary mirror15Exit pupil diameteroptical bench $< 10\%$ 16Exit pupil distortionSNR $< 10\%$	7	length ¹ stability under flight-like	_	$\leq 1 pm / \sqrt{Hz} \times \sqrt{1 + \left(\frac{0.003}{f}\right)^4}$		
8Afocal magnificationinterferometer200/5 = 40x (+/-0.4)9Mechanical length< 350 mm TBR			C			
Optical efficiency (throughput) Shot noise >0.85	8	Afocal magnification		200/5 = 40x (+/-0.4)		
Displacement noise Continuous Pointing	9	Mechanical length		< 350 mm TBR		
Interfaces: Received beam (large aperture, or sky-facing)noiseinto +/- 8 μrad Science FOV12 Stop Diameter (D) (large aperture)Noise/ pointing200 mm (+/- 2 mm)13 Stop location (large aperture)PointingEntrance of beam tube or primary mirrorInterfaces: Telescope exit pupil (small aperture, or optical bench-facing)14 Exit pupil locationPointing13.5 +/- 2 cm (on axis) behind primary mirror15 Exit pupil diameteroptical bench5 mm (+/- 0.05 mm)16 Exit pupil distortionSNR< 10%	10	Optical efficiency (throughput)	Shot noise	>0.85		
12 Stop Diameter (D) (large aperture) Noise/ pointing 200 mm (+/- 2 mm) 13 Stop location (large aperture) Pointing Entrance of beam tube or primary mirror Interfaces: Telescope exit pupil (small aperture, or optical bench-facing) 14 Exit pupil location Pointing 13.5 +/- 2 cm (on axis) behind primary mirror 15 Exit pupil diameter optical bench 5 mm (+/- 0.05 mm) 16 Exit pupil distortion SNR < 10%	11	Scattered Light	*			
13 Stop location (large aperture) Pointing Entrance of beam tube or primary mirror Interfaces: Telescope exit pupil (small aperture, or optical bench-facing) 14 Exit pupil location Pointing 13.5 +/- 2 cm (on axis) behind primary mirror 15 Exit pupil diameter optical bench 5 mm (+/- 0.05 mm) 16 Exit pupil distortion SNR < 10%						
Stop location (large aperture) Pointing primary mirror	12	Stop Diameter (D) (large aperture)	Noise/ pointing			
14Exit pupil locationPointing13.5 +/- 2 cm (on axis) behind primary mirror15Exit pupil diameteroptical bench5 mm (+/- 0.05 mm)16Exit pupil distortionSNR< 10%			C .	primary mirror		
14 Exit pupil location Pointing behind primary mirror 15 Exit pupil diameter optical bench 5 mm (+/- 0.05 mm) 16 Exit pupil distortion SNR < 10%	Interfaces: Telescope exit pupil (small aperture, or optical bench-facing)					
15 Exit pupil diameter optical bench 5 mm (+/- 0.05 mm) 16 Exit pupil distortion SNR < 10%	14	Exit pupil location	Pointing	` '		
	15		optical bench	5 mm (+/- 0.05 mm)		
17 Exit pupil chief ray angle error +/- 10 μrad	16	Exit pupil distortion	SNR	< 10%		
	17 Exit pupil chief ray angle error +/- 10 μr					

SGO-Mid = 250 mm

From U of Glasgow bench design, courtesy of Ewan Fitzsimons and Harry Ward

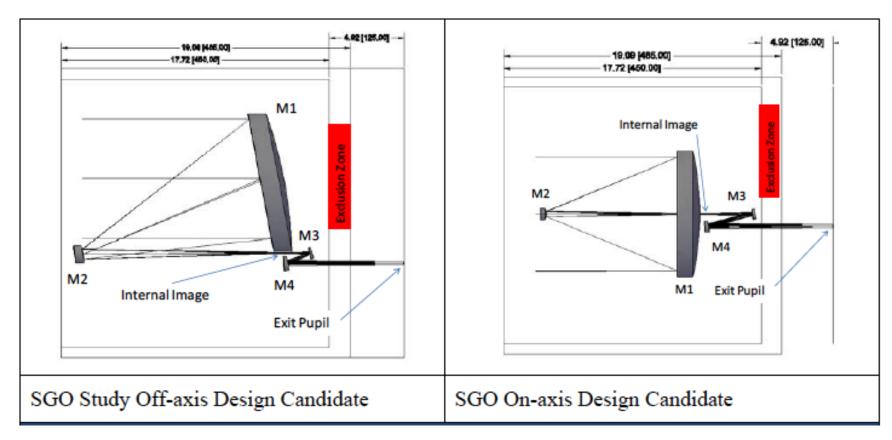
Livas: 10th International LISA Symposium 20 May 2014


challenging

challenging

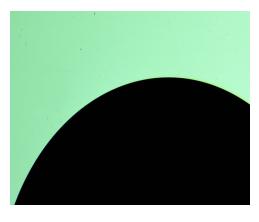
Key Telescope Interfaces

Optical



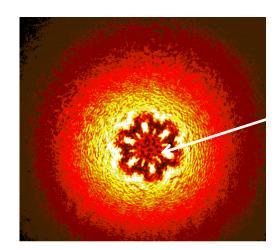
DESIGN STUDY: RESULTS

Designs considered


- Both designs have the same nominal requirements
- Exclusion zone (in red) is for bench optics

Scatter-suppression masks

Why you cannot just drill a hole in the secondary mirror:


Smooth pattern

Poisson Spot

Graphics and data courtesy Shannon Sankar and Ryan Stein

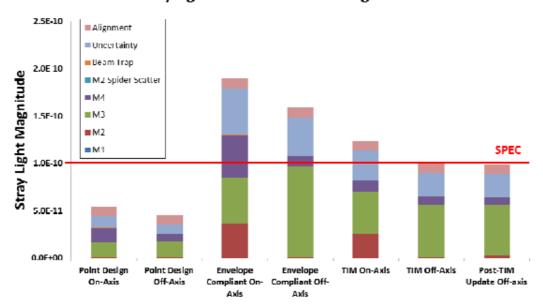
Poisson Spot Suppressed

Livas: 10th International LISA Symposium 20 May 2014

SGO Final Report

Overall Stability Budget (@ .1 mHz)

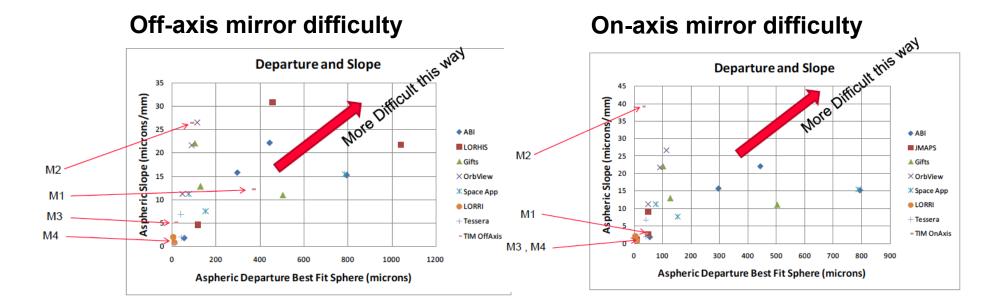
At .1mHz, (worst-case scenario within frequency range), the overall path length stability is divided among the following constituents


Contributor	P-V OPL Change (picometers)		
Thermal	7.075		
Creep	5.096		
Focus Drive	0.015		
Total	12.19		

- Approach that can meet the requirement has been identified
 - Prediction is just within derived specification (12.28 pm).
 - Further optimization and more detailed error budget appropriate for subsequent phase
- Thermal prediction approach assumes electronics box loading and solar loading are in phase (conservative approach)
 - Can further increase stability through using a third baffle (extra mass)
- Belief is that creep is a conservative estimate; could be reduced with geometric design developments and better understanding of the time dependant stability of the Invar material

Stray Light Performance

Stray Light Contributors with Alignment


SGO Straylight Results							
	Point Design On- Axis	Point Design Off-Axis	Envelope Compliant On- Axis	Envelope Compliant Off- Axis	TIM On-Axis	TIM Off-Axis	Off-Axis Post-TIM Update
M1	< 1.00E-15	1.30E-14	5.80E-14	1.40E-15	5.40E-14	< 1.00E-15	< 5.0E-14
M2	6.00E-13	4.60E-13	3.60E-11	7.40E-13	2.60E-11	7.00E-13	2.43E-12
M3	1.60E-11	1.70E-11	4.90E-11	9.60E-11	4.40E-11	5.60E-11	5.43E-11
M4	1.50E-11	8.00E-12	4.47E-11	1.10E-11	1.20E-11	8.80E-12	7.32E-12
M2 Spider Scatter	1.40E-13	n/a	1.40E-13	n/a	1.40E-13	n/a	n/a
Beam Trap	2.50E-13	n/a	2.50E-13	n/a	2.50E-13	n/a	n/a
Alignment	1E-11	1E-11	1E-11	1E-11	1E-11	1E-11	1E-11
Uncertainty	1.21E-11	9.6E-12	4.91E-11	4.06E-11	3.11E-11	2.47E-11	2.41E-11
Total	5.41E-11	4.51E-11	1.89E-10	1.58E-10	1.24E-10	1.00E-10	9.82E-11

M3 dominates

PCOS (Physics of the Coamos Coamic Origins

Manufacturability

- On- vs off-axis mirrors similar in complexity
- On- vs off-axis system alignment similar in complexity
 - Compensation techniques are similar
- Schedule is 16 months for first copy
 - Driver is material availability for SiC (study contractor makes material!)
 - Once material is cast, then machining is the bottleneck
 - "pipeline" approach is possible and reduces recurring schedule to ~ 10-12 months/copy

SGO Final Report

Trade Study Overview

Petaled mask research		Si/SiC		Glass/Graphite Composite		
		On-Axis	Off-Axis	On-Axis	Off-Axis	
Manufacturing	Optics	M2 beam trap/spot implementation	standard practice	M2 beam trap/spot implementation	tandard practice	
Manufacturing	Manufacturing Structure		heritage	heritage	heritage	
Manufacturing	Alignment	standard practice	standard practice	standard practice	standard practice	
Environmental Test	Thermal Vacuum	standard practice	standard practice	Standard practice CME / Outgassing considerations	Standard practive CME / Outgassing considerations	
Environmental Test	Launch Loads	heritage design and strength heritage design an		heritage design and strength	heritage design and strength	
Environmental	Environmental Stability		Prior Setup Verification Required; DMI or Mach-	DMI or Mach-Zender	Prior Setup Verification D VII or Mach-Zender	
Did not understand testin		ng requirement	S wer for structure / optics / testing	higher for structure / optics / testing	higher for structure / optics / testing	
Schedule		Optic procurement drives schedule	Optic procurement drives schedule	Structure procurement / Testing drives schedule	Structure procurement / Terting drives schedule	
Stability	Thermal analysis	Can meet requirements	Can meet requirements	San meet requirements after outgassing (risk long term)	Can meet requirements after outgassing (risk long term)	
Stability	Manufacturing & Material Variability	Use of Invar in metering	Use of Invar in metering path	Use of Invar in metering path; Long term CME effects	Use of Invar in metering path; Long term CME effects	
Stray light		M2 beam trap/spot implementation and native performance	standard practices	M2 beam trap/spot implementation and native performance	standard practices	

Increased risk
High risk

Low risk

Livas: 10th International LISA Symposium 20 May 2014

Design Study: Lessons Learned

Very difficult to design the telescope by itself

- Thermal specifications most difficult
 - Vendor did not know how to handle temperature variation with time
 - interface specs necessary but not sufficient
 - Eventually gave them our spacecraft thermal design
 - Simplified design compliance criteria to check lowest frequency point only
- Scattered light specifications very challenging
 - Models are not well understood at these low levels
 - Only surface roughness and some contamination modeled
 - No polarization information
 - Field of view as seen by the detector difficult to implement in practice
 - Results not always the same with what should be equivalent approaches
 - Staffing changed mid-way through the study and approach changed

Pathlength stability spec not understood

- Proposed tests confuse CTE with stability
- Invar mirror mount estimated creep is nearly half of the overall budget

Vendor heritage experience not as helpful as expected

- On- vs off-axis experience seemed to act to raise on-axis complexity to match off-axis: demonstrated heroics vs "typical" design
- What they said: compensation techniques make both designs similar

Testing is essential to validate design/modeling

Summary

Industrial Study recommended an off-axis silicon carbide design

- May be right answer, but for the wrong reasons
 - Off-axis complexity/performance comparisons not compelling (on-axis comparison may be needlessly complex)
 - Silicon carbide chosen for schedule risk due to moisture absorption in composites (not for performance)
- Probably one of the best vendors out there, and they did not understand the specs
- Scattering suppression studies are to "hedge our bets"

A realistic TRL-5 prototype is expensive

- Materials and processing are expensive
- Environmental testing is expensive (mid-TRL work is expensive...)
- Challenging specs are expensive and risky if vendors lack knowledge and experience

Forced to re-scope goals

- Set understanding models and design process as a higher priority than achieving performance
- Stray light is the priority for this round; earlier stability testing with a SiC spacer¹

Modeling must be verified by testing

- Very small values for scattered light require importance sampling techniques: uncertainty
- Very small pathlength change values require large dynamic range in calculations
 - Magnified thermal perturbations to be able to see the pathlength changes, then scaled results
 - No obvious problems detected
 - o FRED has high dynamic range, CodeV/Zemax do not

¹J. Sanjuan et al, *Rev Sci Intrum.* **83**(11), 116107 (2012)