Pulsar Timing Arrays

Ryan Lynch McGill University

On behalf of NANOGrav and the International Pulsar Timing Array

'ALNI

AAAA

What we'll talk about

- Review of basic pulsar properties
- Pulsar timing
- Using pulsars to detect gravitational waves
- Current limits
- Prospects for the future

NANOGrav and the IPTA

- NANOGrav North American Nanohertz
 Observatory for Gravitational Waves
- EPTA European Pulsar Timing Array
- PPTA Parkes Pulsar Timing Array
- IPTA International PTA

Pulsar "Lighthouse" Model

Millisecond pulsars

- Dead pulsars can be recycled by accreting mass from a binary companion
 - Spun up to millisecond periods
 - Magnetic field buried
 - Low spin-down and very stable rotation

Pulse stability

- Pulse shape/intensity can vary from rotation to rotation
- But a stable pulse profile emerges after summing over many rotations (~hundreds thousands)

Image credit: Cordes, 1979, SSR, 24, 567

Pulsar Timing:

Unambiguously account for every rotation of a pulsar over years

Slide courtesy of Scott Ransom

Measurement – Timing Model = Residuals

Pulsar Timing:

200ns RMS over 2 yrs

Slide courtesy of Scott Ransom

Image credit: Handbook of Pulsar Astronomy (Lorimer and Kramer)

Pulsar Timing

Deviations from white noise can be modeled -> science!

Pulsar Timing Arrays

- The influence of a GW at the Earth should be correlated between MSPs
- An array of MSPs timed to very high precision becomes a unique GW detector
 - Deviation in timing residuals ~10s 100s of ns

Observational Signatures

- Different source classes have different structure in residuals
- The IPTA is currently timing 50 MSPs many with sub- μs RMS residuals

PTAs vs Double Neutron Stars

- PTAs != Hulse-Taylor and other DNSs
- Both DO use pulsar timing
- DNSs are sensitive to GWs emitted by the binary
- PTAs are sensitive to cosmological sources

Challenges: Noise Sources

20 June 2013

Slide courtesy of Tim Dolch

Challenges: Noise Sources

Slide courtesy of Tim Dolch

NANOGrav Radio Telescopes

- NANOGrav uses the Arecibo Observatory and Green Bank Telescopes
 - Leverage existing facilities and capabilities
- Telescopes are used in complimentary fashion and the loss of either telescope would be extremely detrimental Image credit: NAIC

NANOGrav Radio Telescopes

Image credit: NANOGrav

EPTA Telescopes

- The EPTA uses 5 European telescopes
- The LEAP project seeks to tie these together into a phased array

The Parkes Telescope and the PPTA

Image credit: ATNF/CSIRO

- The PPTA uses the 64meter Parkes telescope
- An important southern hemisphere telescope that completes sky coverage of the IPTA

Complementary GW Detectors

PTAs are sensitive to periods of ~weeks to years

 Set by cadence (short) and span (long) of observations

Model	Α	α	References
Supermassive black holes	10 ⁻¹⁵ – 10 ⁻¹⁴	-2/3	Jaffe & Backer, 2003, ApJ, 583, 616 Wyithe & Loeb, 2003, ApJ, 590, 691 Enoki et al., 2004, ApJ, 615, 19 Sesana et al., 2008, MNRAS, 290, 192
Relic gws	10 ⁻²⁰ - 10 ⁻¹⁵	-1 to -0.8	Grishchuk, 2005, PU, 48, 1235 Boyle & Buonanno, 2008,PRD,78,043531
Cosmic Strings	10 ⁻¹⁶ - 10 ⁻¹⁴	-7/6	Maggiore, 2000, PR, 331, 283

Current Limits: Stochastic Background

- PTAs are already putting useful constraints on SMBH merger models
- New data releases forthcoming from NANOGrav, EPTA, PPTA, and combined IPTA dataset

Image credit: Shannon et al., 2013, *Science*, 342, 334

Current Limits: Continuous Wave

The Future: Instruments and Telescopes • CHIME is a Canad

Image credit: chime.phas.ubc.ca

Image credit: NANOGrav

- CHIME is a Canadian BAO experiment
 - Will include a pulsar backend allowing daily observations of northern IPTA MSPs
- Ultra-broad band receiver being commissioned at Effelsberg
 - Similar receiver is planned for the GBT
- Important for mitigating ISM effects

The Future: Instruments and Telescopes

Image credit: fast.boa.ac.cn

• FAST is a 500-meter telescope that will illuminate 300 meters at a time

- Like a more steerable Arecibo
- Eventually, the SKA will provide incredible sensitivity
- Better S/N -> better timing precision, more pulsars

Image credit: SKA/Swinburne

The Future: New MSPs

- All PTAs are involved in large-area surveys
 - HTRU: Parkes

60°

- HTRU-North: Effelsberg
- PALFA (Arecibo) and GBNCC (GBT) most relevant for NANOGrav
- Data-sharing agreement allows new MSPs to be immediately included in IPTA timing

The Future: Detection

- Depends on pulsar properties (timing noise), number of sources, future of telescopes...
- A detection within the current decade seems
 very plausible

Image credit: NANOGrav

The Future: Detection

The Future: Astrophysics

Image credit: NANOGrav

Learn more...

CRSNG

This material is based in part on work supported by the National Science Foundation under Grant Number 968298. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessary reflect the views of the National Science Foundation.

- www.ipta4gw.org
- nanograv.org
- www.epta.eu.org
- www.atnf.csiro.au/resea rch/pulsar/ppta/
- NANOGrav, EPTA, IPTA also on Facebook
- New members/ collaborators welcome!

Thank you!