The Three-Backlink Experiment
K.-S. Isleif, J.-S. Hennig1, R. Fleddermann1, C. Diekmann1, M. Trobs1, G. Henzer1, K. Danzmann1

Introduction
Arm breathing & TDI require a backlink

The current design of LISA has non-common mode arm length changes which result in the coupling of laser frequency to phase. It can be suppressed in data post-processing by using the Time Delay Interferometry (TDI) algorithm that requires the differential phase noise of the TX lasers within one satellite to be negligible.

Due to the arm breathing, the angle within the spacecraft constellation varies up to ±1.5°/yr. The beam directions of the laser from the distant spacecraft and the local laser change significantly. Using two optical benches (OBs), following the incoming beams, can compensate for the angular deviations. Three OBs must be optically connected via backlink for the TDI algorithm to exchange their local oscillators. Three backlinks are planned to be tested in one optical set-up. The stabilized fibre backlink, the frequency separated fibre backlink and the free beam backlink. The non-common mode pathlength change between both directions of a backlink, the so-called non-reciprocity, is required to be below 1 pm/√Hz.

Stabilized fibre backlink

Already tested, used as reference in the 3-backlink experiment

Experimental set-up
- Nd:YAG laser (1064nm, idio-locked)
- f_L = 13.254kHz
- length stabilizer of backlink fibre on ring piezo
- stray light attenuation via beam splitter stages behind both fibre couplers

Results
- stray light suppression via attenuation
- stray light correction via balanced detection
- differential wavefront sensing (DWS) correction

Attenuation is a valid method to decrease the stray light influence on the measured phase that is generated from the fibres providing the laser light. However, it is unattractive as backlink solution for LISA since it yields a huge loss of laser power in the measurement interferometers.

MOSAs
Movable Optical Sub Assembly
The optical assembly point-ing is one approach to compensate the breathing of the arms. Two separated MOSAs per satellite are rotatable around their pivot axes that allows to compensate the angular deviations via a control loop. One of the two OBs planned in the 3-backlink experiment will be movable to analyse the influence of the bench motion on the backlink connection making it similar to the MOSA configuration.

Stray light
Sources, possible correction & attenuation
Sources of stray light are direct reflections at the lenses of the fibre couplers or at the fibre interface. Due to Rayleigh scattering, the main part of back-reflected light is generated in the fibre core.

Correction via balanced detection
- assumption: stray light enters at one beam splitter part
- subtraction delivers twice the nominal signal, no stray light
- loss of PD redundancy in LISA

Attenuation via beam splitter stages
- stray light is attenuated once more than the light coming from the fibre
- loss of laser power

Two backlink alternatives
Frequency separated fibre backlink & Free beam backlink

Frequency separated fibre backlink
- stray light is frequency shifted with respect to the measurement signal on the same PD

Free beam backlink
- stray light only from fibres providing the lasers TX1 and TX2
- compensation of the movement of one beam against the other of about ±1.5° with 2 movable mirrors
- imaging systems decouple the movement of one actuator of the DWS signal on the distant bench

Design status
FoS simulation & current layout
The 3 backlink solutions will be tested in one experimental set-up consisting of 2 OBs. This simulation allows to find useful imaging systems for the free beam backlink, correct laser powers and stray light estimations.

We gratefully acknowledge support the German Aerospace Center (DLR) (S00031301) and thank the German Research Foundation for funding the Cluster of Excellence QUEST (Centre for Quantum Engineering and Space-Time Research).

www.elisascience.org