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A drag-free spacecraft utilizes a Gravitational Reference Sensor (GRS) to shield an internal To determine the stability and performance of the drag-free control system, a 4kg 3U nano- The dominant drag forces act in the negative x-direction of the satellite causing it to spin about
free-floating test mass (TM) from both external disturbances and disturbances caused by the satellite candidate was simulated with a circular polar orbit at 400km and is summarized by the the body z-axis. Therefore, the largest displacements can be seen in the y-direction and
spacecraft itself. It measures the position of the spacecraft with respect to the TM and a block diagram below. associated coupled yaw angle 1 .

feedback control system commands thrusters at the aft to maintain that position. In principle,

the TM is then completely freed from non-gravitational disturbances so that it and its “tender”
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« Higher sampling rates can produce more precise results at the cost of processing speed and
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« Assumed Min. thrust bit: ~12 pN
« Assumed Max. thrust bit: ~480 pN
« Assumed Noise: ~12 uN

DRAG-FREE ATTITUDE AND CONTROL SYSTEM
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control system (DFACS) is a Translational Control « Compare performance between a small cubic GRS and the Stanford spherical GRS
ol feed-back control system that R s ,

2. Test Mass Caging System = The Drag-free attitude and

» Prevents damage to the sphere during launch and releases the
sphere after arrival of the satellite on orbit; developed by

« Fuel reduction studies and navigation errors at different small satellite heights
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« Noise: ~10 nm-Hz

4. UV LED Charge Control
« Utilizes ultra-violet LEDs to minimize charge build-up on test-
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