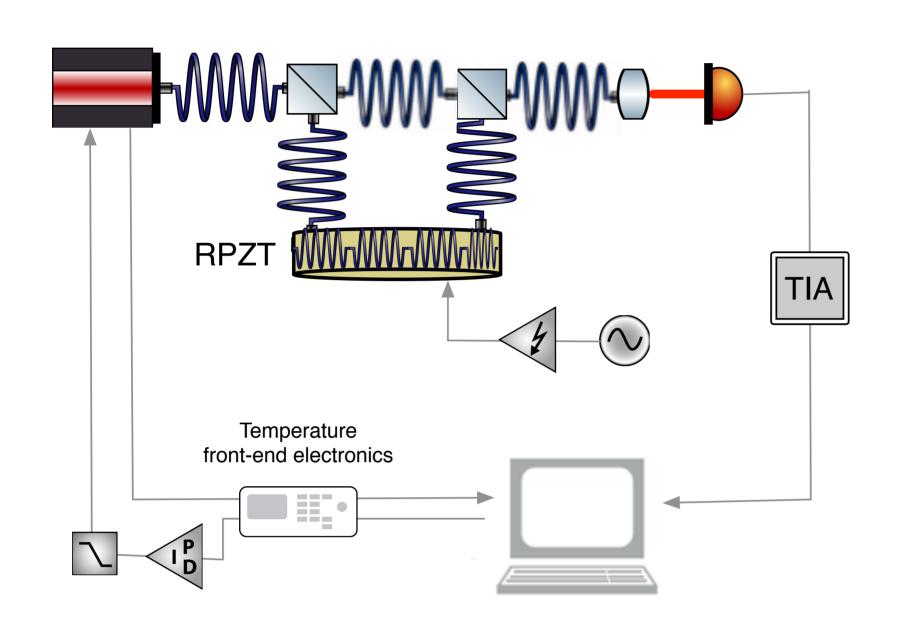
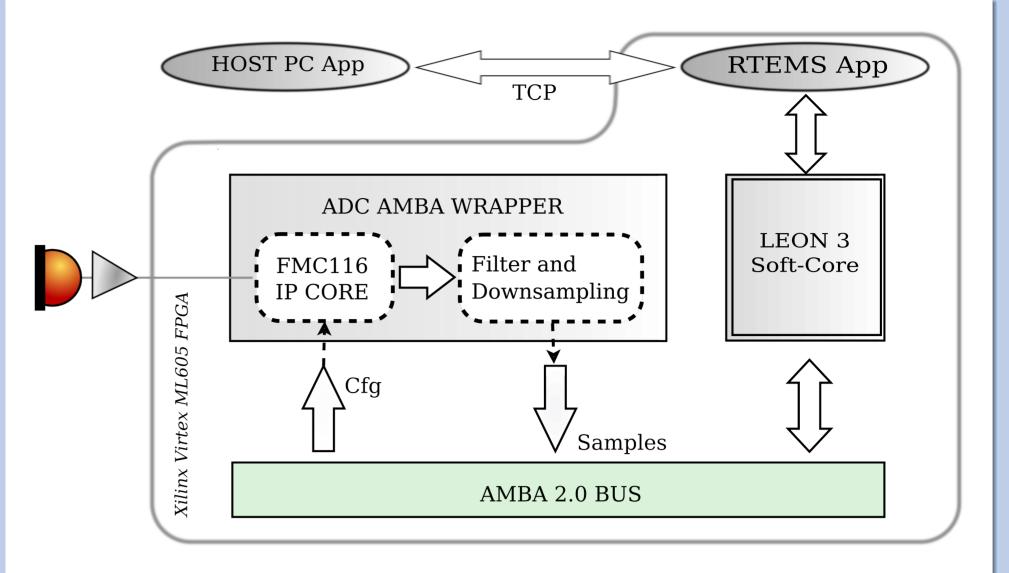


# Towards a FPGA-controlled deep phase modulation interferometer


M. Terán <sup>1</sup>, V. Martín <sup>1</sup>, LI. Gesa <sup>1</sup>, I. Mateos <sup>1</sup>, F. Gibert <sup>1</sup>, N. Karnesis<sup>1</sup>, T. Schwarze <sup>2</sup>, O. Gerberding <sup>2</sup>, G. Heinzel <sup>2</sup>, F. Guzman <sup>3</sup> and M. Nofrarias <sup>1</sup> <sup>1</sup>Institut de Ciencies de l'Espai, (CSIC-IEEC), Barcelona, Spain <sup>2</sup>Albert-Einstein-Institut, Max-Planck-Institut fur Gravitationsphysik, Hannover, Germany <sup>3</sup>National Institute of Standards and Technology, Gaithersburg, US




# Introduction

Deep phase modulation interferometry [1] was proposed as a method to enhance homodyne interferometers to work over many fringes, allowing for instance continuous real-time tracking. In this scheme, a sinusoidal phase modulation is applied in one arm while the demodulation takes place as a post-processing step. In this contribution we report on the development to implement this scheme in a fiber coupled interferometer controlled by means of a FPGA, which includes a LEON3 soft-core processor. The latter acts as a CPU and executes a custom made application to communicate with a host PC. In contrast to usual FPGA-based designs, this implementation allows a real-time fine tuning of the parameters involved in the setup, from the control to the post-processing parameters.

## **Current experiment setup**



## **FPGA** architecture



The System On Chip (SoC) approach has been used with the following components synthesized in a Xilinx<sup>©</sup> FPGA: A Gaisler<sup>©</sup> LEON 3 Soft-Core CPU, a  $4\text{DSP}^{\odot}$  FMC116 ADC wrapped in a custom made component that communicates directly with the CPU using AMBA technology bus, and a custom embedded RTEMS Application running on SoC, that is in charge of acquiring, processing and transmitting data to Host PC Application trough ethernet TCP/IP, system monitoring and configuration managing.

We have implemented a setup to test deep phase interferometry. It is an all-fiber Mach-Zehnder interferometer which use a piezo tube with 5 m of optical fiber wrap around it to increase the pathlength in one of the interferometer arms. Our source is a laser diode at 1064nm.

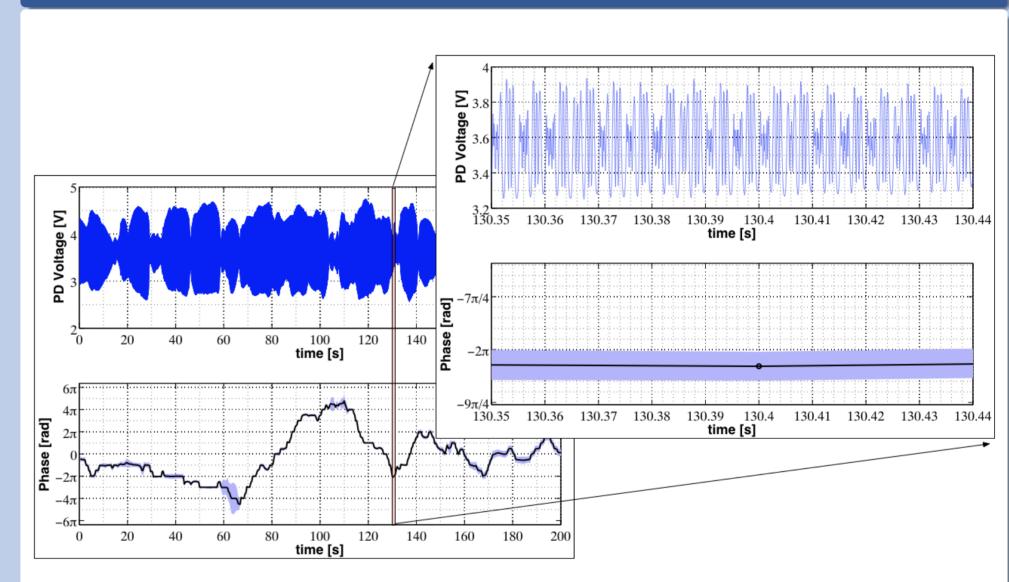
In our current setup, we have modified the LISA Pathfinder temperature front-end electronics to control the laser temperature. Data acquisition and post-processing is performed in a PC. All these functionalities together with the modulation of the piezo are planned to be controlled by a FPGA in a future version of the experiment.

# **Deep phase modulation**

The output signal of a phase modulated homodyne interferometer can be expressed as [1]

$$V_{PD}(t) = V_{DC}(\phi) + \sum_{n=1}^{\infty} a_n(m,\phi) \cos(n(\omega_m t + \Psi))$$
(1)

with


$$a_n(m,\phi) = k J_n(m) \cos\left(\phi + n\frac{\pi}{2}\right)$$
(2)

$$V_{DC}(\phi) = A(1 + C J_0(m) \cos \phi)$$
(3)

where  $J_n(m)$  are Bessel functions,  $\phi$  is the interferometer phase, *m* is the modulation lation depth,  $\omega_m$  is the modulation frequency,  $\Psi$  is the modulation phase, *C* is the contrast, and *A* combines nominally constant factors such as light powers and

The Host PC Application, manages the user interface to customize the system and data persistence.

#### Results



In our proof-of-principle implementation we have applied a 200 Hz modulation signal to the piezo with a modulation depth m  $\simeq$  9. Our current low frequency sensitivity with a table-top experiment on air is 10  $\mu$ m/ $\sqrt{Hz}$  at 10 mHz.

In the figure above the top panel corresponds to the photodiode output sampled at 10 kHz while the bottom panel is the associated phase after post-processing in windows of 4000 samples, yielding an effective phase sampling of 2.5 Hz. The shaded areas show 95% confidence intervals due to fit errors.

#### photodiode efficiencies.

Proposed as an extension of the so called  $J_1 \dots J_4$  [2] methods, the deep phase modulation scheme uses higher order harmonics ( $n \ge 10$ ) to extract the phase information from the modulated output.

# **Phase extraction**

In order to obtain the interferometer phase, the Fourier coefficients  $a_n(m, \phi)$  in Eq. (2) are first obtained through a Fast-Fourier Transform of a segment of data. Then, the coefficients  $\{k, m, \phi, \Psi\}$  are obtained by minimisation of

$$\chi^{2} = \sum_{n=1}^{10} |\widetilde{V}_{PD}(n) - a_{n}(m,\phi)e^{i\,n\,\Psi}|^{2}$$
(4)

where  $\widetilde{V}_{PD}(n)$  is the n-th harmonic of the measured voltage at the output of the photodiode. A Levenberg-Marquardt algorithm is used to process the measured output and obtain the set of coefficients.

# Future improvements

## Our next steps include:

- ► Integration of the FPGA in the optical experiment.
- Implementation of the digital analysis, modulation and post-precessing in the FPGA.
- Integration of the metrology experiment in vacuum conditions.

## References

- G.Heinzel et al., Deep phase modulation interferometry, Opt. Exp., Vol. 18, No. 18, 19076 (2010)
- V.S. Sudarshanam, R. O. Claus, Generic J<sub>1</sub>... J<sub>4</sub> method of optical-phase detection: Accuracy and range enhancement, J. Mod. Opt. 40, 483-492 (1993)

