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Within the frame of Einstein’s General Relativity, gravitational waves are expected to possess two tensorial polarizations, namely the well-known

h, and hyx modes. Other metric theories of gravity however allow the existence of additional modes (two vector and/or two scalar modes), and

the (non-)observation of those additional polarizations could put constraints on the validity of all existing theories, which would consequently

provide a further test for General Relativity.

In its 2-arm-planned-configuration, eLISA only consists of one detector orbiting around the Sun, and we therefore investigate if there is a

possibility to still detect and separate additional modes of a given gravitational wave signal.

Perturbed metric corresponding to a propagating gravitational wave:

e Time-delay interferometric combinations,
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e Similar behaviour between LISA and eLISA in the high-frequency regime (where they are
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e GW stochastic background in the low frequency limit e If the output data of the single detector is written as h(t) + n(t), with n(f) the noise, the

autocorrelation of the signal reads
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with A =+, X, x, vy, b, [ all possible polarizations, F'4 the antenna pattern function.

with Si(]f|) the one-sided power spectral density; one can define S, in a similar way for the noise.

e Overlap reduction function (how much degree of correlation is preserved between detectors)

e The maximum SNR given by this process is
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— Also valid in the high-frequency limit, for a single detector, but for an unpolarized GWB
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o GW background energy density Q. = Q. + Q. (similar for Q) and Q3), related to the
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e The tensor, vector and scalar modes can then be separately detected via
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e Cross-correlating the TDI combinations of a LISA-like single detector also correlates the noise

e The separation of all modes however requires a network of detectors
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e Work in progress

— Letting eLISA evolve on its orbit and correlating the signals at different time

= Valid for a network of independant detectors in space (3 LISA-like detectors would be suffi-

— Correlating eLISA signal with future earth-based detectors around 1Hz
cient), in the low frequency limit, and for a full polarized GWB

= “Static” system (the relative position of the detectors in the network doesn’t change)
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