Interplay of Frustration and Geometry in Josephson Arrays on a Dice Lattice

Piero Martinolia, M. Teseia, R. Thérona, and S.E. Korshunovb

aInstitut de Physique, Université de Neuchâtel, CH-2000 Neuchâtel, Switzerland
bL.D. Landau Institute for Theoretical Physics, Kosygina 2, 117940 Moscow, Russia

Very sensitive magnetoimpedance $[Z(B)]$ measurements performed on arrays of SNS Josephson junctions with the S-islands sitting on the sites of a dice lattice reveal unusual features resulting from the interplay between the applied transverse magnetic field B, which frustrates the system, and the unconventional lattice geometry. The inverse magnetoinductance $L^{-1}(f) = \omega/\text{Im}Z(f)$ (where f is the magnetic flux per rhombic tile in units of the flux quantum) is found to exhibit prominent peaks at $f = 1/3$ and $f = 1/6$ (and weaker maxima also at $f = 1/9$ and $f = 1/12$) reflecting the existence of ground states with a high degree of superconducting phase coherence, while the deep minimum at $f = 1/2$ points to a ground state whose phase coherence is extremely vulnerable. Within the framework of the frustrated XY model, all these ground states turn out to exhibit an accidental degeneracy associated with the formation zero-energy domain walls. It is shown that, in a real array, the inclusion of magnetic interactions between currents is the most important mechanism lifting the degeneracy and stabilizing an ordered vortex pattern at low temperatures. For $f = 1/2$, however, no evidence for a phase transition is found in our finite-frequency experiments. For $f = 1/3$, despite the fact that within the XY description the accidental degeneracy is so developed that, in contrast to the $f = 1/2$ case, no vortex ordering is expected down to $T = 0$, the analysis of the data support the idea of a phase transition driven by the unbinding of half-vortex pairs.

Sorting category: Bd Superconductivity

Keywords: Josephson junction arrays, frustration, vortices, phase transitions

LT2183