
Page | 1  
 

Inhomogeneous charge transport in organic photovoltaic devices 

 
Mark Hannel 

Department of Physics, Purdue University, West Lafayette, IN 

 

Under the direction of Dr. Selman Hershfield 

Department of Physics, University of Florida, Gainesville, FL 

 

Abstract 

The current of charge carriers in organic photovoltaic devices were investigated using 1D and 2D 

computational models.  It is shown here that analytic treatments of the current in photovoltaic 

devices based in electrostatics and the drift-diffusion equation make a faulty assumption that is 

not always valid.  The charge density, potential, and current were simulated in 2D across two 

materials in contact: one n-type and one p-type.   The results agree with the theoretical 

expectations. 

 

 
I. Introduction 

 Photovoltaics devices (PVD) or in particular solar cells represent a clean-alternative to 

coal-produced electricity should they ever become cost effective.  To become cost effective, 

photovoltaic devices must be able to produce electricity at a price comparable to that of coal-

produced electricity.  Presently, two avenues for improvement exist: make PVD’s cheaper and 

easier to produce or make them more efficient. One of or a combination of these two efforts may 

allow PVDs to become a better source of electricity than coal and nuclear power.  One promising 

device is the organic photovoltaic device (OPV).
[1]

  An OPV differs from traditional PVDs in 

that it is made out of polymers rather than traditional semiconductors like silicon.
[2]

  Although 

the polymers in OPVs produce electricity less efficiently, they reduce manufacturing cost to a 
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fraction of that of traditional PVDs.
[3]

   Despite their cheap manufacturing cost, the efficiency of 

OPVs must be increased before they can compete with coal-produced electricity. 

 I investigated the physics behind an organic photovoltaic device and constructed a 

computer model to examine the physical properties of the device.  By varying the structure of the 

device within my model, I hoped to possibly improve the efficiency of the device.  The project 

did not reach this final stage in the ten week program; however, my computational models 

produced several interesting results and intriguing questions. 

 

Physical properties of an OPV cell 

  The physics underlying polymer solar cells differs from traditional semiconductor solar 

cells in several ways.  In traditional PVDs, absorbed light excites an electron from its atomic 

bound state, allowing it to move about the array.  Since the array has two materials, one which 

accepts holes (p-type) and one which accepts electrons (n-type), an electric field between the two 

semiconductors forces the conduction electrons in one direction, creating a net current.  The net 

current across the junction establishes a potential difference across the PVD and therefore makes 

the solar cell a generator of electricity. 

OPVs do not function in the same way.  According to Pichler, Friend, and Holmes
[4]

, the 

photoconductivity of OPVs results from photogenerated excitons (electron-hole pairs), not from 

excited electrons.  The electron and hole of the exciton can recombine at any time due to their 

mutual coulombic interaction.  Traditional PVDs also produce excitons; however, the binding 

energy of the exciton is very small in semiconductors, so they ionize.  Once the exciton has been 

generated by incoming light, it will diffuse throughout the material.  Should the exciton reach the 

junction (the boundary between the two polymers) before recombination, the exciton will 

dissociate, allowing the hole to enter the p-type polymer and flow towards one electrode and 
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allowing the electron to enter the n-type polymer and flow 

towards the opposite electrode (See Fig. 1). The currents 

due to these two charged particles will provide a net current 

across the OPV and allow the OPV to generate electricity. 

The goal of my computational modeling was to 

replicate as much of the experimental results as possible 

while incorporating as few physical principles as necessary.  In the process of creating my 

model, I decided on five primary physical interactions.  First, the conservation of charge must be 

upheld by using the continuity equation: 

     
  

  
                                                                      

Secondly, the potential must satisfy Gauss’s law: 

      
 

 
                                                                        

The current, j, must be calculated from the drift and from the diffusion of charge carriers.  

However, in my two dimensional simulations, I neglect the diffusion term due to empirical 

evidence and traditional analytical treatments (see next section for justification): 

                                                                                  

(Note ρ can be positive or negative for charge density).  The resistance between the two 

materials must be accounted for in order to properly explain the current across the junction.  

Finally, the dissociation of excitons near the boundary creates a net current across the junction.  

To good approximation, the dissociation will occur continuously and be evenly dispersed along 

the junction due to the random nature of exciton generation and diffusion.  Therefore, I can 

account for this behavior by adding a constant to the current across the junction. 

 

FIG. 1  Schematic depicting the resulting 

charge current after dissociation. 
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Computational model for a 1-D p-type material 

  Several 1D models were made to explore the role of diffusion in polymers, to ensure that 

my model follows Mott-Gurney’s Law and to decide what boundary conditions were necessary 

to provide a complete and consistent solution.  In particular, I will describe a 1D model which 

substantiates my claim that diffusion can not easily be neglected, and then I will describe a 1D 

model that served as the genesis for my 2D model. 

One method examined the 1D case using a combination of the shooter method and the 

Runge-Kutta method in order to calculate the electric field and charge density across a p-type 

sample. The initial values of the model consisted of the electric field at both electrodes.  By 

specifying the electric field and guessing its derivative at the left electrode (See Fig. 1), the 

shooter method uses the Runge-Kutta method to simultaneously solve the continuity equation 

and Eq. (7) to find the density of holes and the electric field throughout the material.  The first 

attempt usually does not hit the correct electric field on the right, and therefore several guesses 

are necessary (See Fig. 2). By making wild guesses and then interpolating to find a best guess, 

the shooter method arrives at a quite accurate result.  

A second method examined the 1D case using the 

finite element method (FEM) to determine the potential 

and the integrate-forward method to approximate the 

charge density.  First I use a grid of points to represent 

the p-type sample (see Fig.3).  The FEM relates the first 

and second derivates of a function at a single point to the 

functions neighboring values.  A discrete version of Poisson’s 

equation gives the finite element method as many equations as 

Fig. 2 Sketch showing the basics of the 

shooter method.  The blue trajectories  

are guesses and the red trajectory is the 

best guess. 
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there are points.  However, since the endpoints are the only points specified, the first iteration of 

the FEM returns a best guess.  If I continually use these best guesses as the initial conditions of a 

next guess, the FEM returns more accurate results until eventually the correct solution will be 

known within some uncertainty (This process is known as the method of relaxation and works 

for equations such as Poisson’s Equation). Meanwhile, between iterations of the FEM, the charge 

density is updated across the sample by manipulating a discretized version of the continuity 

equation. I used this discrete function to find the derivative of charge density with respect to x 

and then “integrated-forward” from the known density on the left. By alternating between these 

two methods, the steady state solution will be found as long as the initial values allow the 

method to converge. 

  

 

 

 

 

Mott-Gurney law and the diffusion of charges 

My 1D results challenge an approximation within the Mott-Gurney Law.
[5]

  The Mott-

Gurney Law states that the current across a slightly doped semiconductor with a potential 

difference, V, established across it by an ohmic contact will exhibit the following relations: 

                                                                                    

                                                                                                    

PVDs and OPVs exhibit this behavior experimentally and have been explained analytically by 

Mott and Gurney. 

Fig. 3 A schematic showing the grid structure and the three initial values.  The 

voltage is specified on the left and right  as VL and VR respectively.  The charge 

density is set as NL on the left. 



Page | 6  
 

To understand why my model did not observe the Mott-Gurney law, the underlying 

approximations of the Mott and Gurney derivation must be examined.  Free charges within a 

material will diffuse; however, following the derivation of the Mott-Gurney Law explicitly 

requires that the diffusion term be neglected due to its small size when compared to the drift 

term. Mott and Gurney’s derivation is as follows: 

The drift-diffusion equation in one dimension is: 

            
  

  
                                                                         

This is the standard equation for the current where ρ is the charge density, e is the charge of an 

electron or hole, υ is the mobility constant of the material, E is the electric field, and D is the 

diffusion coefficient.  Using Gauss’s Law, Eq. (6), to eliminate ρ from Eq. (5) and then 

integrating with respect to x, one arrives at Eq. (7): 

   
  

  
                                                                                         

         
 

 
     

  

  
                                                                    

By noting that D=kTυ/e and assuming dE/dx~E/L,  

     
  

  
 

 

 
                                                                                    

Since Eq. 8 holds for most cases, Mott and Gurney neglect diffusion term.  The assumption that 

V~E/L, however, seems to be problematic.   

Using the Runge-Kutta method and the shooter method in 1D, Fig. 4 and Fig. 5 resulted 

from solving Eq. (5) with the drift coefficient set to .01 and to 1.0 respectively.  Both cases use a 

small voltage and thus in both cases, Mott and Gurney predict that the entire diffusion term 

should be negligible in comparison to the entire drift term.  Fig. 4 and Fig. 5 do not show this 
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behavior. Instead, reducing the diffusion coefficient to almost zero does approximately give the 

results Mott and Gurney predict; however when the diffusion coefficient was set to 1.0, a linear 

electric field is produced and the drift term and diffusion term are of the same order.  In fact, 

only in regions where the change in charge density is small does the diffusion term become 

negligible.  Therefore I found that one can not easily account for the small nature of the diffusion 

term using electrostatics and the drift-diffusion equation alone.  Knowing that the Mott-Gurney 

law can be derived by other methods besides the drift-diffusion equation, I decided to drop the 

diffusion term from my model for physically accurate results.  Without the diffusion term, the 

current does vary as the Mott-Gurney law suggests as shown in Fig. 6. 
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Fig. 4 Solving for the electric field using low drift 

coefficient. 

Fig. 5 Solving for the electric field using high drift 

coefficient. 

 

Fig. 6 IV curve created using  1D code.  Due to 

instability, the solution from higher voltages was 

fed as an initial guess to the next lowest voltage. 
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Computational model for a 2-D array with two materials 

 By using the finite element and integrate-forward methods, I found the approximate 

potential and density throughout two materials in two dimensions.  Similar to the 1D case, I 

established a grid of points to replicate the material in two dimensions (See Fig. 7).  I then 

repeatedly used the finite element method in two dimensions to update the potential and used the 

“integrate-forward” method to calculate the density.  Because of the second material, the initial 

values are slightly different: the charge density is specified on the left for the p-type material and 

on the right for the n-type material.  The change in the initial value points does not stop the 

method from finding the steady state solution.  By alternating between updating the two different 

materials, my method found a steady state solution, again provided that the initial values allowed 

the method to converge.  To probe smaller potential differences across the device, ones that 

typically cause the code to diverge, I used the solution from a higher voltage as an initial guess.  

 

 

 

Steady state solution for an OPV without light  

 The initial conditions for the three figures are summarized in Fig. 8.  My two 

dimensional, two material results are shown in Figs. 9-11.  From observing the three figures, I 

Fig.7  A sketch of the grid of points in 2D with the three types of initial value points.  The   P-type 

material is on top and the n-type material is on bottom in this diagram.  The voltage is specified 

on the left as VL and on the right as VR.  The charge density in the p-type material is specified on 

the left as NL. The charge density in the n-type material is specified on the right as NR. 
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saw several parallels between my computational result and accepted theory.  The charge density 

has a build up of charge at the interface, and the charge densities for the p-type and n-type 

materials are symmetric, exactly as expected from accepted theory.  In a 1D p-type material, the 

charge density progressed as x
 -1/2

 as Mott and Gurney suggest; in the 2D case, near the center of 

the p-type material it follows the same relation as it should.  The potential has a negative 

curvature in the p-type region and a positive curvature in the n-type region as expected by 

Poisson’s equation and the generated density map.  Finally, there exists a small current flowing 

from n-type to p-type as I had expected.  One can see that this should be the case by looking at 

the slope of the potential near the interface.  The negative of the slope gives the direction of the 

electric field.  By using Eq. (3), one can easily see that there should be current flowing over the 

junction. 

 

 

 

 

 

 

 

Voltage Left 1.00 

Voltage Right 0.00 

Density p-type 1.00 

Density n-type -1.00 

Fig.9 A charge density map.  

Note that positive values 

represent holes and negatives 

values represent electrons. 

Fig.8 A Table that gives the initial values used in 

my computational model to find Fig. 8-10 
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Conclusion 

 My 1D and 2D models of an OPV device confirmed my theoretical expectations and 

provided insight into the physics behind OPV.  From my 1D modeling, I learned that the Mott-
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Fig.10 A Potential landscape.  

Both Fig. 8,9 are oriented with 

the p-type material on the left 

and the n-type material on 

the right. 

Fig.11 Current arrow map, 

oriented left to right with the 

n-type material on top and 

the p-type material on 

bottom. 
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Gurney Law can not be accounted for using electrostatics and the drift-diffusion equation, and 

that more complicated phenomena, such as trapped states, must be used to adequately correlate 

the experimental findings to Mott-Gurney’s result.  Due to several experimental findings that 

PVDs follow the Mott-Gurney law to good approximation, I neglected the diffusion term to 

allow my simple model to achieve more accurate results.  My 2D results corroborate my 

expectations as to how the potential, density, and current relate in 2D across two differing 

materials.  The stability of my 2D method leads us to believe that more physical interactions 

could be accounted for within this model without causing the method to diverge away from a 

steady state solution. 

 Several questions remain to be answered.  A follow up simulation might attempt to 

answer the following questions: When resistance is added to the junction, how will the potential, 

density, and currents maps be displaced?  When the dissociation of excitons is accounted for, by 

how much will the current increase across the device?  What geometry will offer the highest 

efficiency?  Can my 2D model evolve directly into a 3D model? 
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