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Abstract

This paper presents the concept of anyons and how they arise in d = 2 + 1 physical

theories. Classical properties are briefly discussed, but the main applications are a

consequence of the quantum nature of these strange particles. Anyons are particles that

occur in planar physics which carry neither integer (bosons) or half integer (fermions)

spin. In fact, they can carry any positive real number spin and this paper shows how

this manifests. The main physical application addressed is the fractional quantum hall

effect (FQHE). Problems with the non-relativisic formulations of anyons is motivation

to come up with a relativistic field theoretic way of treating anyons.
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1 Introduction

This paper is intended to convey the peculiarities of physical systems constrained to two

space dimensions and explain how these properties come up in physical applications. The

motivation for this comes from the applications to the integer quantum hall effect (IQHE)

and, more specifically for this paper, the fractional quantum hall effect (FQHE). The latter

effect is less understood in terms of solid state techniques, and one may look to the quantum

relativist’s tool of field theory to understand such an effect.

In 2 + 1 dimensions, strange particle states called anyons are present which can, and

will, be seen from a straightforward symmetry argument. These particles, unlike bosons

or fermions, can have any real value for spin and lead to the idea of generalized statistics

in quantum mechanics. Anyons prove to be very useful in describing phenomena like the

FQHE.

Anyons can be described in a variety of ways. One of the ways is to look at anyons from

a model independent framework and consider them as spinning particles with fractional

spin (note here, and for the remainder of the paper, we will stick to the awkward convention

of fractional depicting the fact that a value may take on any real number). This can be

done in a completely classical setting with no reference to statistics. One may also look at

anyons from a field theoretic standpoint as quantum excitations of a classically bosonic or

fermionic system. We will primarily be focused on the latter description which will restrict

our attention to the celebrated Chern-Simons theories in 2+1 dimensions. Widely known

for many interesting topological properties, Chern-Simons is important in this setting as

it is the covariant generalization of a particle with generalized statistics and can admit

anyon-like excitations at the quantum level.

We will look at Chern-Simons theory from various perspectives and offer few different

methods of quantization, each of which have some advantages and disadvantages. Lastly,

we will look into the somewhat ill-understood realm of fractional supersymmetry and how

this could possibly be used to construct a relativistic field theory of anyons. No new

2



results are given in this paper, but the methods highlighted above are a relatively new way

of solving this problem and will be the topic of future research.

1.1 Conventions

We will primarily be working in 2 + 1 dimensions with the choice of metric signature gµν =

diag(+1,−1,−1). Repeated indices are always summed over unless otherwise stated. The

standard three vector is labeled with a Greek index: xµ = (x0, x1, x2) = (t,x). Latin

indices xi go over i = 1, 2 and are the spatial parts of the vector. Shorthand for derivatives

is ∂µ = ∂
∂xµ .

2 Symmetries in the plane and classical anyons

Here we analyze the symmetries present in 2 + 1 dimensions. We start with the Poincaré

group and see how its representation leads to the concept of arbitrary spin in the plane.

Next, we take a digression to a non-relativstic interpretation of anyons and how it relates

to the relativistic notion. This section is devoted to a classical description of anyons which

will lead into the quantum concept of anyonic behavior.

2.1 The Poincaré Group

The set of space-time symmetries of quantities in arbitrary dimension are formally defined

to be the set of all real linear transformations

(aµ,Λµν ) : xµ 7→ x′µ = Λµνx
ν + aµ (1)

which leave s2 ≡ gµνx
µxν = (x0)2 − (x1)2 − (x2)2 invariant. They actually form a group

called the Poincaré group. The above transformation law indicates that π is actually

a semidirect product of a translation group N ∼= R3 and the three-dimensional Lorentz

group SO(2, 1). As with any Lie group, we refer to the infinitesimal generators to make
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the connection to the associated Lie algebra. The Hermitian generators of the Lorentz

subgroup are Mµν = i(xµ∂ν − xν∂µ) + Sµν , and they obey the usual SO(d, 1) Lie algebra,

[Mµν ,Mρσ] = i(gµσMνρ − gνσMµρ − gµρMνσ + gνρMµσ). (2)

As we shall see in a moment, the spin part Sµν is the defining factor for the uniqueness

of 2 + 1 dimensional theories. The generators of the translational symmetries are Pµ =

−i∂µ, which of course commute with each other, yet have non-trivial bracket with the

rotation generators. We can summarize the commutation relations by introducing the

(non-Hermitian) generators K0 = −iM01, K1 = −iM02, and K2 = M12. The brackets

then read,

[Kµ,Kν ] = iεµνρKρ , [Kµ, P ν ] = iεµνρPρ , [Pµ, Pν ] = 0 (3)

which summarize the Poincaré algebra in 2 + 1 dimensions. As with the 3 + 1 dimensional

case, we have two Casimir operators, yet they take a slightly different form. The first is

P 2 ≡ PµPµ, and the second is the Pauli-Lubanski scalar

W ≡ P ·K = εµνρPµMνρ. (4)

For single particle representations Φ we have the eigenvalue equations

P 2Φ = m2Φ and WΦ = −msΦ (5)

In contrast to the 3 + 1 case, there is no a priori restriction to the values that the spin s

can take on. This conclusion can also be seen from a more formal covering group argument

and this is presented in Appendix A[1].

2.2 The Galilei Group and Anyons

We now take a slight detour to demonstrate how the concept of anyons from the clas-

sical perspective can lead to unusual implications. The Galilei group G2|1 in three di-

mensions is the group of symmetries which simultaneously leave g̃µν =diag(1, 0, 0) and
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g̃µν =diag(0, 1, 1) invariant. We have six generators: J , Ki, H, Pi of rotations, boosts,

time translations, and spacial translations, respectively. They satisfy the Poisson brackets

(only non-vanishing commutators listed),

{J,Ki} = εijKj , {J, Pi} = εijPj , {Ki, H} = Pi. (6)

It is known that G2|1 admits a two-fold central extension via the modifications,

{Ki, Pj} = mδij and {Ki,Kj} = −κεij . (7)

We have two Casimir invariants,

C1 = mJ + κH − εijKiPj and C2 = mH − 1
2
PiPi. (8)

For the case C1 = C2 = 0 we have the following realization of the algebra, Pi = pi,

Ki = mxi − tpi + mθεijpj , J = εijxipj + 1
2θpipi, and H = 1

2mpipi where θ ≡ κ/m2.

With this, we have the usual time evolvement ẋi = {xi, H} = pi
m , yet coordinates do not

commute [2]:

{xi, xj} = θεij . (9)

We can get to this same structure among coordinates by starting with Poincaré symmetry

and by placing no restrictions on the spin. We obtain the result after demanding covariance,

{xµ, xν} = sεµνρ
pρ

(p2)3/2
(10)

[3]. We can make the non-relativistic expansion p2
0 = mc+ pipi

2mc +O
(

1
c2

)
to get

{xµ, xν} ≈
sεij
m2

(11)

in the non-relativistic limit [4]. We conclude there is a relationship between these two

situations with the correspondence κ↔ s.

3 Quantum Anyons

We now look at anyons as particle states that have fractional spin in a statistical sense

which is a consequence of their quantum nature.
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3.1 Fractional spin through quantum solenoids

In this example, we show how the spectrum of angular momentum can be shifted from

integer or half integer multiples of the fundamental constants [5]. This is not an actual

realization of fractional spin, but with some modification we can exhibit such an effect.

Consider the planar motion of a charged particle and let there be a solenoid centered at

the origin. The Lagrangian is,

L =
1
2
mẋ2 + eẋ ·A(x) (12)

where we can gauge the potential to be

Ai(x) = − Φ
2π
εij
xj

x2
(13)

[6]. The magnetic field is the scalar quantity given by B = εij∂iAj = Φδ(2); therefore, the

quantity Φ can just be interpreted as the magnetic flux. The momenta are found to be

pi = m · xi + eAi and the Hamiltonian has the form

H =
1

2m
(
pi − eAi

)2 =
1
2
mẋ2 (14)

which, as expected, is the same as that of a free particle. The presence of the singular

solenoid at the origin does not affect the classical dynamics of the particle, but it does give

rise to quantum effects. Note that, because the potential outside the solenoid is constant

we can set it to zero via a gauge transformation A′i = Ai − ∂iΩ where Ω = φ
2πΦ and φ

is the polar angle. The wave function becomes ψ′ = e−iΩψ. If we demand ψ to satisfy

periodic boundary conditions: ψ(φ) = ψ(φ + 2π), then ψ′ satisfies ”twisted” boundary

conditions: ψ(φ + 2π) = e−iΩψ(φ). The mechanical angular momentum operator is the

usual Jm = −i∂φ and we see that

Jmψ
′ =

(
l − Φ

2π

)
ψ′ (15)

where Jmψ = lψ is the usual spectrum. Thus, we see that in the presence of these fictitious

solenoids our wave function acquires some non-trivial shift in the spectrum of angular

momentum; that is, fractional spin.
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We can, in a sense, make this construction more formidable by not biasing our shift in

the angular momentum spectrum to rotations about the origin [7]. For this we introduce

a many particle generalization of the above construction. The first thing to notice is that

we can write the interaction term in the above Lagrangian as Lint = Φ
2π Θ̇(x) where

Θ(x) = arctan
(
x2

x1

)
. (16)

This function is obviously multi-valued on R \ {0} but by defining a branch cut we can

make it single valued on the universal cover ˜R2 \ {0}. We can write the total Lagrangian

for N particles as

L =
N∑
i=1

1
2
mẋ2

i +
Φ
2π

∑
i 6=j

Θ̇ij (17)

where we have used the notation Θij ≡ Θ(xi−xj). The spectrum is now J = l− Φ
2πN(N−1)

for l ∈ Z. We can also look at this system in the Hamiltonian formalism and we find that

the system (H,ψ) where H is the Hamiltonian associated with the above Lagrangian is

equivalent to the system (through a gauge transformation) (Hfree, ψ
′) where Hfree is the

free Hamiltonian and

ψ′(xi) =
∏
i<j

exp
[
−iΦ
π

Θij

]
ψ(x). (18)

3.2 The covariant formulation

Some problems exist with the previous formulation. First, the interaction lagrangian, as

written, is nonlocal. Secondly, the gauge field A above is not a genuine gauge field because

it is not even dynamical. We fix this problem, and by doing so we will run into the

notorious Chern-Simons term. For this, we consider coupling n charged particles to an

external gauge field Aµ [7]. In some non-relativistic limit we see that the same type of

generalized statistics is achieved. We start with an n particle source, jµ. We couple to a

gauge field via L = L0 + LI + Lg where,

LI = e
∑
i

(ẋi ·A−A0) and Lg =
π

Φ

∫
d2y

[
A(y)× Ȧ(y) +A0(y)B(y)

]
. (19)
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We can write the above in a covariant fashion,

SI =
∫
d3x jµ(x)Aµ(x) and Sg =

π

Φ

∫
d3x εµνρAµ(x)∂νAρ(x). (20)

We have finally seen the Chern-Simons term: εµνρAµ∂νAρ. Just as we saw peculiarities

group theoretically in 2 + 1 dimensions, we have this term which is only possible in odd

dimensions and not in the usual 3+1 dimensional setting. This term has expanded to create

and entire branch of theoretical physics with its importance in topological field theories,

knot theory, and more. It can be seen most easily as the surface term of the Lorentz

invariant term in 3 + 1 dimensions εµνρσFµνFρσ:∫
d4x εµνρσFµνFρσ = 4

∮
d3x ε0µνρAµ∂νAρ (21)

which, in most circumstances, can be set to vanish. When the four-volume is chosen to be

compact or finite, this term can affect physics on a 2 + 1 dimensional surface.

It can be shown through the path integral method that this system acquires fractional

statistics. The non-relativistic effective action takes the form

Seff =
Φ
2π

∑
i,j

∫
dt

d

dt
Θij + Sg (22)

where Sg is a topological term which does not affect the spin or statistics of the system [7].

4 Anyons and field theory

In this section, we will discuss the need for a field theoretic formulation of anyons. To do so

we will briefly discuss the quantum hall effect and the solutions of variations of the effect

and how completeness is not achieved with the standard methods of trial wave-functions

and effective field theories.

4.1 The FQHE

The classical Hall effect is a simple consequence of the Lorentz force law. Consider a

constant magnetic field in the ẑ direction B = B ẑ and an electron confined to a plane
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perpendicular to this field. The Lorentz force is just, F = eB
c (vxŷ− vyx̂). We suppose that

a batch of electrons have current j = ρevxx̂ where ρ = N
A , N is the number of electrons

and A is the area of the plane. There is an induced electric field E = 1
cvxBŷ and we can

define the so-called Hall conductance as,

σH ≡ σxy =
ec

B
ρ. (23)

An important fact to note is that this Hall conductance varies continuously with respect

to the magnetic field B. The quantum Hall effect is prevalent in a high magnetic field (or

low temperatures) and predicts the Hall conductance to acquire plateaus. That is, the Hall

conductance is given by

σH =
2πνe2

~
(24)

where ν is a rational number. When ν is an integer, this is known as the integer quantum

Hall effect (IQHE), and when ν is not an integer, it is called the fractional quantum Hall

effect (FQHE).

4.2 The Laughlin wave-function

The IQHE was observed in 1980, and two years later the FQHE was observed [8]. The

IQHE is easily described using a Landau level approach and quantizing this way. The

FQHE, however, is believed to be a many-body effect and can not be described through

such techniques. Laughlin found a variation wavefunction for the ground state of the FQHE

which worked nicely in predicting the fractional levels of the conductivity. Specifically, the

ground state Laughlin wave-function for N particles takes the form

ψ(z1, . . . , zN ) =
∏
j<k

(zj − zk)2q+1 exp

{
−
∑
i

|zi|2

4`2m

}
(25)

where z = x + iy, q ∈ Z+, and `2m = ~/eB is the so called magnetic length [8]. One can

compute the Hall conductance by perturbing the corresponding Hamiltonian adiabatically

with respect to the time dependence of the magnetic flux.
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It was confirmed by Wilczeck that the ground state actually acquires anyonic statistics

by computing the Berry phase of the exchange of two quasi-holes, as to be compared with

the fictitious solenoids discussed earlier. Incompleteness of the Laughlin approach arises

when one tries to analyze the full symmetry of the QH system. This problem has been

addressed and a field theoretic approach to anyons is believed to hold the solution.

4.3 Anyons as fundamental fields

In both the relativistic and non-relativistic case, work has been done to produce soliton

solutions to Chern-Simons models which acquire anyonic spin and statistics. This is unsat-

isfactory if one wants a local theory for anyons and it is not the approach that we discuss

here. We review over the tools needed to develop anyons as fundamental objects in a

completely local quantum field theory in 2 + 1 dimensions. Knowledge of the symmetry

group in 2 + 1 dimensions was discussed earlier and plays a very important factor in this

formulation.

It is constructive to first see how a formalization looks in a non-relativistic theory and

where the problems arise. Let ϕ be a complex bosonic field and take the Lagrangian

L = iϕ∗D0ϕ+
1

2m
Diϕ

∗Diϕ+
κ

2
εµνρAµ∂νAρ (26)

where Dµ = ∂µ− iAµ is the covariant derivative [8]. Varying with respect to A0 we get the

Gauss’ law constraint: B = − e
κρ where ρ ≡ φ∗φ is the number-density and B = ∇× A =

εij∂iAj . We choose the transverse gauge ∂iAi = 0 to solve the Gauss’ law constraint:

A =
e

κ

∇
∇2
× ρ =

e

κ
εij

∂j
∇2

ρ (27)

or more concisely,

Ai(x) = εij∂j

(
e

κ

∫
d2y G(x− y)ρ(y)

)
(28)

where ∇2G(x − y) = δ(2)(x − y). We can write this in terms of the well known angle

function Θ(x),

A(x) = − e

2πκ

∫
d2y ∇xΘ(x− y)ρ(y). (29)
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As discussed earlier, the Θ function is multi-valued and we cannot, in general, take out the

gradient from the integral in order to make Ai a pure gauge field. To fix multi-valuedness,

we can specify some branch cut in the (y1, y2) plane starting at (x1, x2), yet we still cannot

remove the derivatives, for the branch cut will also depend on x. The special case where

we can write Ai as a total gradient is when the number-density is a sum of δ-functions, i.e.

the non-relativistic case. In this case we have

A(x) = − e

2πκ
∇x
(∫

d2y Θxy ρ(y)
)
. (30)

Similarly, we can show that the scalar potential can also be written as a pure gauge and

we find that we can make a gauge transformation Aµ → A′µ = Aµ + ∂µΛ to eliminate the

gauge field from our classical theory. Under this gauge transformation the action takes the

form

S′ =
∫
d3x

[
iϕ̃∗∂0ϕ̃+

1
2m

ϕ̃∗∂i∂iϕ̃

]
(31)

where the gauge transformed matter fields are ϕ̃ = exp[−ieΛ(x)]ϕ(x). With the usual

bosonic equal time commutation relations

[ϕ(x), ϕ†(y)] = δ(2)(x− y) (32)

[ϕ(x), ϕ(y)] = 0 = [ϕ†(x), ϕ†(y)] (33)

the gauge adjusted matter field commutation relations are

ϕ̃(x)ϕ̃(y) = eiπαϕ̃(y)ϕ̃(x) (34)

ϕ̃†(x)ϕ̃(y) = eiπαϕ̃(y)ϕ̃†(x) + δ(2)(x− y) (35)

where, implicitly we have chosen a cut so that Θ(e1 + εe2) → 0 and Θ(e1 − εe2) → 2π

as ε → 0. Note this sets Θxy − Θyx = π. Also, we have set α = e2/2πκ. The above

shows that these bosonic fields acquire anyonic statistic under this gauge transformation.

This second quantized theory can be shown to be equivalent to the first quantized model

discussed earlier where we considered Aµ as a statistical interaction between particles in
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the plane. The problem with this construction is that by demanding these operators to

be local we must choose a specific branch cut to come up with the commutation relations.

This is simply unsatisfactory for a physical theory, and to encode the way by which the

wave-function changes, we must take into account how we braid the interchanging of x and

y; this requires non-local operators. A way to do this is to choose a single-valued definition

for Θ and hence demote ϕ̃ to a non-local operator. To conclude, for the non-relativistic

case, the only way we can field theoretically describe anyons is through a non-local field

theory.

So far, no local relativistic quantum field theory for anyons, but unlike the non-

relativistic case the possibility must not be ruled out. For the quantum theory, we are

interested in finding quantized anyon operators which give rise to states with arbitrary

spin. The prototype model for this is the pure Chern-Simons term coupled to a scalar

matter field. The Lagrangian is given by,

L = (Dµϕ)∗(Dµϕ) +
κ

2
εµνρAµ∂νAρ. (36)

This model is canonically quantized in both equal times and in the light-cone in Appendix

B. For now we will be interested in the equal time quantization. It can be shown that

this model is Poincaré covariant with the brackets and constraints given in the appendix.

The physical states of the model are the states which are annihilated by our first class

constraints Ω0|ψ〉 = ξ̄|ψ〉 = 0. We define the one particle states to be the ones which carry

unit charge: q =
∫
d2x j0. That is, the state |1〉 = ϕ̂|0〉. The creation operator must then

satisfy

[j0(x), ϕ̂(y)] = δ(2)(x− y)ϕ̂. (37)

The creation anyon operator ϕ̂ actually has the explicit form

ϕ̂(x) = exp
{
iπ

θ

∫
d2y Θ(x− y)j0(y) + i

∫ x

dy ·A(y)
}
ϕ (38)

where θ = 2π2κ [9]. Using the branch cut, Θxy − Θyx = π we can invoke the Baker-

Campbell-Hausdorff formula exp{
∫
d2ξf(x−ξ)g(ξ)}ϕ(y) exp{−

∫
d2ξf(x−ξ)g(ξ)} = exp[f(x−
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y)]ϕ(y) to realize the generalize statistics relation

ϕ̂(x)ϕ̂(y) = eiπ
2/θϕ̂(y)ϕ̂(x). (39)

This shows the spin-statistics connection for this theory. Note that θ = π/2n and θ =

π/(2n + 1) correspond to bosons and fermions respectively while other values of θ, which

are not prohibited, correspond to anyons. To see explicitly the non-locality of the theory

in terms of anyonic fields we rewrite

[Diϕ(x)]∗[Diϕ(x)] = ∂i

[
exp

{
− iπ
θ

∫
d2y Θ(x− y)ĵ0(y)

}
ϕ̂(x)

]∗
×

∂i

[
exp

{
− iπ
θ

∫
d2y Θ(x− y)ĵ0(y)

}
ϕ̂(x)

]
[9]. If we were to work in the light-cone formalism, we would see a very similar non-

locality property in an anyon Hamiltonian, but it happens that the Hamiltonian has a

much simpler form. In future research this might be a desirable property when trying to

localize the anyon fields with techniques such as fractional supersymmetry.

5 Remark on Fractional SUSY

Fractional supersymmetry is a relatively new mathematical idea and an even newer phys-

ical principle. In ordinary supersymmetry, we extend the Poincaré algebra to include a

fermionic generator Q (and its conjugate) which, when acting on the appropriate Hilbert

space, replaces a boson field for a fermion field and vice versa. The natural bracket for this

fermionic generator is the anticommutator. This gives what is called a Z2-graded struc-

ture to the algebra. Supersymmetry can be seen in a natural way through the superspace

formalism where these generators actually arise as symmetries in a new space - superspace

- (xµ, θ) where xµ is the usual space-time coordinate and θ is the super-coordinate which

is taken to be a Grassmann variable. That is, it satisfies θ2 = 0. Constructions such as

derivation and integration on the supermanifold (xµ, θ) can be done, and we can build any

supersymmetric theory through this formalism.
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Because we are interested in not only bosons or fermions, but particles of any spin, one

may conjecture a more general type of supersymmetry. Instead of a Z2-graded algebraic

structure we are looking for a ZF -graded structure, and this is known as F-supersymmetry

or FSUSY for short [10]. A straightforward generalization of the superspace formalism

would give us a space (xµ, θ) which satisfies θF = 0. We might then ask what is the

natural bracket for our algebra. One may take various approaches to construct such a

fractional superspace and it is very much a work in progress. The goal would be to apply

such techniques to anyon field theories.

6 Conclusion

To conclude, we have shown how anyons arise in various 2+1 dimensional physical systems.

While the IQHE can be described with ordinary techniques we saw that anyons might

hold the answer to a more complete description of the FQHE, and specifically a field

theoretic formulation of them. The importance of the Chern-Simons term enters as a

consequence of making anyonic interactions covariant. Non-relativistic field theories for

anyons as fundamental fields were seen to possess intrinsic non-localities. Relativistically

speaking we saw the same type of problem, but as remarked in the end of the last section

it is still an open problem to find a localized relativistic theory for anyons.
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Appendix

A The universal cover of SO(2, 1)

Suppose our quantum system is described by the Hilbert space H and thus the states are

elements of the projective space P (H) = (H \ {0})/C×. A symmetry of our system is

a bijection P (H) → P (H) which leaves the quantity |〈ψ, ψ̄〉|2 invariant. The set of all

symmetries is denoted S(H). A famous theorem by Wigner states that all symmetries

of our quantum system are induced by unitary (or anti-unitary) operators acting on H.

Moreover these symmetries S(H) form a group. If G is a Lie group, it is known that

the connected component of G is generated by elements of the form expX where X is an

element of the Lie algebra of G. Also, all elements of the connected component of G act

as unitary symmetries. We have the following result from Wigner

Theorem A.1 If G is a connected Lie group and λ : G→ S(H) is a group homomorphism

then for each g ∈ G there is a unitary operator L(g) such that λ(g) is induced by L(g).

In this manner we obtain a representation of G in H: L : G → U(H) where U(H) is the

unitary group of symmetries. A projective unitary representation of G in H is a continuous

homomorphism L̃ : G→ U(H)/C×.

A given Lie algebra g uniquely describes a simply connected Lie Group G̃ (all paths in

G̃ are contractible). Moreover, any Lie group can be obtained from a simply connected Lie

group via the quotient of some discrete central subgroup N C G: G = G̃/N. This simply

connected group G̃ is called the universal cover of G. An irreducible unitary representation

of the covering group uniquely defines a projective unitary representation of G. It therefore

suffices to find unitary representations of the universal cover of any given Lie group. For

rotations in three dimensions we have S̃O(3) = SU(2), for the ordinary Lorentz group in

four dimensions, ˜SO(3, 1)+ = SL(2,C). Take for instance the little group corresponding to
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PµP
µ = m2 > 0 of the three dimensional Poincaré group π+ = R3 n SO(3, 1)+. That is,

{pµ : p2 = (p0)2 − (p1)2 − (p2)2 = m2 > 0}. (40)

This group is isomorphic to O(2) the orthogonal 2× 2 matrices. A group element has the

form  cos θ sin θ

− sin θ cos θ

 . (41)

Obviously, there is a multi-valuedness in the corresponding representation and thus the

little group is not simply connected. In fact, Õ(2) = R. Which most formally depicts

the arbitrariness of the eigenvalue of the spin operator in 2 + 1 dimensions to be any real

number. Intuitively, this is obvious as the group of rotations in Rd is abelian for d ≤ 2.

B Pure Chern-Simons coupled to a scalar

Consider the theory of a Chern-Simons term with a scalar field,

L = (Dµϕ)∗(Dµϕ) +
κ

2
εµνρAµ∂νAρ (42)

where we have the covariant derivative Dµφ ≡ (∂µ + ieAµ)ϕ. We will quantize this model

canonically using the Dirac procedure [9] for constrained systems in equal time and in the

light-cone. There are advantages and disadvantages in both methods.

B.1 Equal-Time Qauntization

The conjugate momenta are,

π =
∂L

∂ϕ̇
= (D0ϕ)∗ , π∗ = D0ϕ

π0 =
∂L

∂Ȧ0

= 0 , πi =
∂L

∂Ȧ0

= −κεijAj .

(43)
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The conserved gauge covariant current is, jµ = ie(ϕ∗Dµϕ − ϕD∗µϕ∗). We postulate the

equal-time Poisson brackets,

{φ(x), π(y)} = δ(x− y) , {φ∗(x), π∗(y)} = δ(x− y) (44)

{Aµ(x), πν(y)} = −gµνδ(x− y). (45)

These lead to the primary constraints,

Ω0 ≡ π0 ≈ 0 and Ωi ≡ πi + κεijAj ≈ 0. (46)

The quantization technique used is known as Dirac quantization and follows most closely

the method given in [11].The canonical Hamiltonian density takes the form,

Hc =
∑

πaψa − L (47)

= πϕ̇+ π∗ϕ̇∗ + πiȦi − L (48)

= π∗π + (Diϕ)∗(Diϕ) +A0j0 − κεij(A0∂iAj +Ai∂jA0). (49)

As in any constrained system, the canonical Hamiltonian is not the correct one and we

must introduce the modified Hamiltonian, H =
∫
d2x(Hc+u0Ω0 +uiΩi), where the u’s are

to be treated as Lagrange multipliers. We have the consistency condition, Ω̇0 ≈ 0 ⇒ ξ ≡

{H,π0} = j0 + κεij∂iAj ≈ 0 and Ω̇i ≈ 0 ⇒ ui = −∂iA0 + 1
κεikjk. The first is a secondary

constraint, the second just relates our Lagrange multiplier to the canonical fields. To check

for tertiary constraints, we take ξ̇ ≈ 0⇒ κεij∂iui + ∂iJi ≈ 0 which is just a restatement of

the above. So there are only three primary constraints and one secondary constraint. Now

we classify the constraints further. A first class constraint is one that weakly commutes

with all other constraints. Clearly Ω0 ≈ 0 is a first class constraint. Furthermore, Ωi ≈ 0

and ξ ≈ 0 are second class constraints. We can take a linear combination however,

ξ̃ ≡ ξ + ∂iΩi (50)

to form a first class constraint. Thus, we classify:

First class constraints : Ω0 ≈ 0 , ξ̃ ≈ 0 (51)
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Second class constraints : Ωi ≈ 0. (52)

Now we look to form the Dirac bracket. It is defined for two functions f, g in phase space

as,

{f, g}D ≡ {f, g} −
∫
d2x d2y {f,Ωi(x)}C−1

ij (x,y){Ωj(y), g} (53)

where Cij(x,y) ≡ {Ωi(x),Ωj(y)}. We compute, Cij(x,y) = κεijδ(x − y). Thus, C−1
ij =

1
κεijδ(x− y). So,

{φ(x), π(y)}D = δ(x− y) , {φ∗(x), π∗(y)}D = δ(x− y) (54)

{A0(x), π0(y)}D = −δ(x− y) (55)

which are the same as the Poisson brackets and,

{Ai(x), Aj(y)}D = −1
κ
εijδ(x− y). (56)

B.2 Light-Front Quantization

We use the same Lagrangian but now look at quantizing the theory in the light-cone gauge

[12]. For this, it is easiest to rewrite our theory in light-cone coordinates. We perform

quantization in the light-cone gauge, namely A− = 0. The canonical momenta are,

π =
∂L

∂(∂+ϕ)
= (D−ϕ)∗ , π∗ =

∂L
∂(∂+ϕ∗)

= D−ϕ (57)

πµ =
∂L

∂(∂+Aµ)
= aε+µνAν (58)

for κ = 2a. We have the natural quantity jµ = ie(ϕ∗Dµϕ−ϕD†µϕ), which is the conserved

(covariant) current. The canonical Hamiltonian is,

Hc = (D1ϕ)∗(D1ϕ)−A+Ω (59)

where

Ω = ie(πϕ− π∗ϕ∗) + aε+ij∂iAj + ∂iπ
i. (60)

We proceed via the Dirac method for quantization, as done previously.

18



C Some field theory

Here we give a treatment of classical and quantum field theory which will allow the reader

to follow the above analysis. One can view general classical mechanics from two pictures:

Lagrangian or Hamiltonian mechanics, both of which are equivalent. For a more extensive

treatment, one can refer to [1].

In the Hamiltonian formalism we start with a configuration space (p, q) that describes

the momentum and coordinates of our particle and a Hamiltonian H which governs the

time evolution of trajectories. The equations of motion are given by,

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (61)

Equivalently, we can introduce the Poisson bracket {, }PB which acts on the phase space

functions to write q̇ = {q,H} and ṗ = {p,H}. In fact, for any function defined on (q, p, t)

we have Ḟ = {F,H}+∂tF , showing more explicitly that the Hamiltonian, in fact, generates

the dynamics of the system.

In the Lagrangian formalism we are concerned with the space (q, q̇) and the quantity

called the action functional S[q, q̇] =
∫
dt L[q, q̇] where L is the Lagrangian that describes

the physics of the system in the following way. The actual trajectory that a particle will

follow is that which minimizes the action. This leads to the equations of motion,

∂L

∂q
=

d

dt

∂L

∂q̇
. (62)

In the Lagrangian picture we can define the conjugate momentum p = ∂L
∂q̇ and we can

perform the Legendre transformation H = pq̇−L to recover the particle’s Hamiltonian. In

this way, classically, we have a natural equivalence of these two pictures.

In field theory we want to generalize our coordinates to fields which are functions of

the coordinates. For this treatment we will be concerned with a scalar field ϕ(x) which

is a function on the manifold xµ = (x0, xi) = t,x) for i = 1, . . . , d. The reader should

be aware, however, that the scalar field is not the only type of field. Generally, fields

19



will be labelled by the way they transform under Lorentz transformation. For instance

a spin-1
2 field (analogous to a fermion) will transform as a spinor and a spin-1 field will

transform as a vector. The generalization of the kinetic term 1
2mẋ

2 in field theory is the

term 1
2 ϕ̇

2 so that the kinetic part of the action is Skin =
∫
dx0 1

2 ϕ̇
2. In field theory,

however, we are interested in not the Lagrangian L, but the Lagrangian density L defined

by L =
∫
ddx L. For physical systems the Lagrangian density must be invariant under

Lorentz transformations and thus the kinetic part has the form,

Lkin =
1
2
ϕ̇2 − 1

2
∇ϕ · ∇ϕ =

1
2
∂µϕ∂

µϕ. (63)

A free scalar of mass m is described by the Lagrangian

L =
1
2
∂µϕ∂

µϕ− 1
2
mφ2. (64)

In general, of course, the Lagrangian will be a general function of fields L = L(ϕ, ∂µϕ).

The action takes the form,

S =
∫

[t1,t2]
dt

∫
ddx L. (65)

Just as in point particle dynamics we can vary the action to get the equations of motion,

∂L
∂ϕ

= ∂µ
∂L

∂[∂µϕ]
. (66)

Consider the infinitesimal transformation ϕ(x)→ ϕ(x) + δϕ(x). In terms of the variation

parameters suppose δϕ = εihi(ϕ) where i is the index for the symmetry transformation. If

the Lagrangian L turns out to be invariant under such transformations then we can define

the current (density), jµi by,

εijµi ≡
∂L

∂[∂µϕ]
δϕ (67)

which is conserved: ∂µj
µ = 0. As in electrodynamics, we write the current density as

jµi = (cρ, j) and the conservation equation is just the continuity equation ∂tρ+∇ · j = 0.

To quantize such theories we may proceed in various ways. The first is through the

canonical quantization where the classical fields ϕ are promoted to operators in some
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Hilbert space and in the simplest cases, the classical Poisson brackets change to commu-

tators: {, }PB → i[, ]. (For some systems, usually gauge theories, with constraints, a more

general approach is necessary). For this method we are primarily interested in the Hamil-

tonian density. The other method is through the path integral. For this we are interested

in the action of the theory, and in particular, the exponential of the action.
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