Position-Sensitive TES: Latest Results and Current Issues

Enectalí Figueroa-Feliciano Kavli Institute for Astrophysics and Space Research Massachusetts Institute of Technology

PoST Collaboration

E. Figueroa-Feliciano, N. Iyomoto, S. R. Bandler, R. P. Brekosky, J. A. Chervenak,
F. M. Finkbeiner, R. L. Kelley, C. A. Kilbourne, F. S. Porter, T. Saab, and J. E. Sadleir

Massachusetts Institute of Technology

Outline

Basic Principles
Segmented Absorbers PoSTs
Continuous Absorber PoSTs
Impedance Fitting and Characterization
Future Work Left is the one the Unliverse is the principal is the principal and the principal in the only the second of the principal is the second of the

Segmented Absorber PoSTs

Tested 3 different link conductances on otherwise same devices

Au absorber = 0.95 μ m thick $C_{abs} = 1465 \text{ fJ/K (/abs)}, G_{abs} > 290 \text{ nW/K (/abs)} @Tc$ $G_{link} = 17 \text{ nW/K}, 34 \text{ nW/K} \text{ or } 68 \text{ nW/K} @Tc$ Mo/Au TES (no absorber on TESs) Tc = 141 mK

PoST Average Pulses Device is not symmetrical!

This device is FAST!

Pulse Height vs. Pulse Height

Pulse Area vs. Pulse Area

Pixel 4 Spectrum

Baseline Resolution

Manganese Ka Resolution

Noise Spectrum: 8.5 eV prediction, not a fit!

Actual Noise

Model Noise, with Excess noise 9 times Johnson

Resolution vs Pixel for 3 values of Gabs

1. A is the one by the back the pridal is the one by high and the pride the standard the the one of the second

Continuous Absorber PoSTs

Continuous PoST

Bi/Cu/Bi = $0.1/0.6/6.5 \ \mu m$ $C_{abs} = 2610 \ fJ/K, \ G_{abs} = 62 \ nW/K \ @Tc$ Similar diffusion constant (G_{abs}/C_{abs}) to the segmented absorber PoST with the medium link.

Mo/Au TES

TESs are covered with the absorber. Tc = 168 mK (due to Bi diffusion into Au)

How to Define pixels

- Ratio of pulse area (TES A/TES B) --> X-ray hit position
- Divide into 93 groups with equal number of pulses (2.18 mm = 23 μ m x 93)

Best Resolution on Continuous PoST: 9.3 eV@6 keV

Resolution for several pixels along the Continuous PoST

Resolution for several pixels along the Continuous PoST

Impedance Fits on Continuouse PoST

Average Pulse data from continuous PoST and prediction from Impedance Fit Model

Noise Prediction vs Data Looks Good but can fit other ways!

Beta as a function of Alpha in a TES

Linear R(T,I)

$$R = \alpha \frac{T}{T_o} + \beta_i \frac{I}{I_o} + R_o$$

14

$$\alpha = \frac{T}{R} \frac{\partial R}{\partial T} \bigg|_{I=\text{const}}$$
$$I \frac{\partial R}{\partial R} \bigg|$$

新闻和国家主义。

$$\beta_i = \left. \frac{1}{R} \frac{\partial R}{\partial I} \right|_{T=\text{const}}$$

$$\beta_i = \alpha \frac{I}{T} \frac{n}{m} = \alpha \frac{I}{T} \frac{dT}{dI}$$

R(T,I)

14.11

alpha(T,I) and beta(T,I)

Beta

Strength Strength Strength Strength

Bias Path through linear R(T,I)

R, alpha and beta

beta = f(alpha)

$\beta_i = \alpha \frac{I}{T} \frac{n}{m} = \alpha \frac{I}{T} \frac{dT}{dI}$

Beta for real Data!!! dT/dI = 36.75

$$\beta_i = \alpha \frac{I}{T} \frac{dT}{dI} + \beta$$

$$R(T,I) = \frac{R_n}{2} \left(1 + \tanh\left[\frac{\alpha_o}{T_c} \left(T - T_c + \left(\frac{I}{A}\right)^{2/3}\right)\right] \right)$$

Non-Linear R(T,I)

Alpha and Beta

Alpha

Beta

Alpha and Beta VS Current and Temp

Bias Point Path

R, alpha and beta through bias curve

Beta vs Alpha and dT/dI

