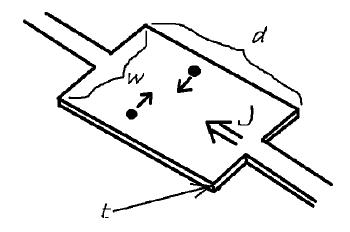
TES III Workshop Gainesville, FL, 17-18 August 2006

Flux Flow noise in Transition Edge Sensors

Massimiliano Galeazzi

DEPARTMENT OF PHYSICS

L J Review of Flux Flow Noise



ALL expressions are in SI units

- v = vortex speed
- $\eta = viscosity$
- ϕ_0 = flux quantum
- *J* = current density
- μ_o = magnetization of vacuum
- H_{C2} = crítical field
- ρ_n = normal state resistivity
- V_I = voltage generated by one vortex
- V = voltage
- I = current
- N = average number of vortices
- V_{RMS} = voltage noise root mean square
- τ = vortex average lifetime
- B = noise bandwidth
- S(f) = noise power density
- e_{ff} = noise spectral density
- *l* = vortex effective mean free path
- Vo = "correlation" voltage

L J Review of Flux Flow Noise

Vortices move perpendicular to current flow with speed:

$$v = \frac{\phi_0 J}{\eta}$$

Where

$$\eta = \frac{\phi_o \mu_o H_{C2}}{\rho_n}$$

Each vortex generates a voltage

$$V_{1} = \frac{v\phi_{o}}{w} = \frac{\phi_{o}}{w}\frac{\phi_{o}J}{\eta} = \frac{\phi_{o}}{w}\phi_{o}J\frac{\rho_{n}}{\phi_{o}\mu_{o}H_{C2}} = \frac{\phi_{o}}{\mu_{o}}\frac{IR_{n}}{wdH_{C2}}$$

v	=	vortex speed
η	=	viscosíty
ϕ_{o}	=	flux quantum
J	=	current density
μ_{o}	=	magnetization of vacuum
H_{C2}	=	crítical field
ρ_n	=	normal state resistivity
V_1	=	voltage generated by one vortex
V	=	voltage
Ι	=	current
N	=	average number of vortices
V _{RM}	s =	voltage noise root mean square
τ	=	vortex average lífetíme
B	=	noise bandwidth
S(f)	=	noise power density
e _{ff}	=	noise spectral density
l	=	vortex effective mean free path
Vo	=	"correlation" voltage

J Review of Flux Flow Noise

If the resistance at the transition is completely due to <u>flux</u> <u>flow motion</u>

$$\Rightarrow \quad R = \frac{V}{I} = \frac{NV_1}{I}$$

$$\Rightarrow \qquad N = \frac{RI}{V_1} = \frac{\mu_o}{\phi_o} \frac{R}{R_n} w^2 H_{C2}$$

For <u>SMALL N</u> this generates a RMS voltage noise:

$$V_{RMS} = \sqrt{N} \cdot V_1 = \sqrt{RIV_1}$$

The average lifetime of each vortex is give by

$$\tau = \frac{w}{v}$$

= vortex speed

 $\eta = viscosity$

V

- ϕ_0 = flux quantum
- *J* = current density
- μ_o = magnetization of vacuum
- H_{C2} = crítical field
- ρ_n = normal state resistivity
- V_1 = voltage generated by one vortex
- V = voltage
- = current
- N = average number of vortices
- V_{RMS} = voltage noise root mean square
- τ = vortex average lifetime
- **B** = noise bandwidth
- S(f) = noise power density
- e_{ff} = noise spectral density
- *l* = *vortex effective mean free path*
- Vo = "correlation" voltage

Review of Flux Flow Noise

$$\Rightarrow \quad B = \frac{1}{\tau} = \frac{v}{w}$$

$$\Rightarrow S(f) = \frac{V_{RMS}^2}{B} = \frac{RIV_1}{\frac{V}{W}} = \phi_0 V$$

$$\Rightarrow e_{ff} = \sqrt{\phi_o V}$$

Thís ís the same result obtaíned by Knoedler and Voss [Phys. Rev. B 26, 449 (1982)] assumíng "vortex" shot noíse.

- v = vortex speed
- $\eta = viscosity$
- ϕ_0 = flux quantum
- *J* = current density
- μ_o = magnetization of vacuum
- H_{C2} = crítical field
- ρ_n = normal state resistivity
- V_1 = voltage generated by one vortex
- V = voltage
- I = current
- N = average number of vortices
- V_{RMS} = voltage noise root mean square
- τ = vortex average lifetime
- B = noise bandwidth
- S(f) = noise power density
- e_{ff} = noise spectral density
- *l* = *vortex effective mean free path*
- V_o = "correlation" voltage

Review of Flux Flow Noise

ISSUE #1: The observed noise is too small → Introduction of <u>vortex mean free path</u>

$$\Rightarrow \quad B = \frac{1}{\tau} = \frac{v}{l}$$

$$\Rightarrow \quad S(f) = \frac{V_{RMS}^2}{B} = \frac{RIV_1}{l} = \phi_0 V \frac{l}{w}$$

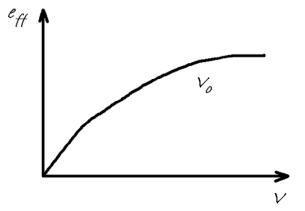
$$\Rightarrow e_{ff} = \sqrt{\phi_0 V \frac{l}{w}}$$

v	=	vortex speed
η	=	viscosíty
ϕ_{o}	=	flux quantum
J	=	current density
μ_{o}	=	magnetization of vacuum
H_{C2}	; =	crítical field
ρ_n	=	normal state resistivity
V_1	=	voltage generated by one vortex
V	=	voltage
Ι	=	current
N	=	average number of vortices
V _{RM}	_{1S} =	voltage noise root mean square
τ	=	vortex average lífetíme
B	=	noise bandwidth
S(f)	=	noise power density
e _{ff}	=	noise spectral density
l	=	vortex effective mean free path
Vo	=	"correlation" voltage

Review of Flux Flow Noise

ISSUE #2: For large N the vortexes are correlated $\rightarrow e_{ff}$ is smaller

But
$$N = \frac{V}{V_1} \Rightarrow \underline{for \ large \ voltage \ the \ noise \ is \ reduced \ due \ to}}{\underline{the \ correlation \ (saturation \ effect).}}$$



V	=	vortex speed
η	=	viscosíty
ϕ_{o}	=	flux quantum
J	=	current densíty
μ_{o}	=	magnetization of vacuum
H_{C2}	=	crítical field
ρ_n	=	normal state resistivity
V_1	=	voltage generated by one vortex
V	=	voltage
Ι	=	current
N	=	average number of vortices
V _{RMS}	5 =	voltage noise root mean square
τ	=	vortex average lífetíme
B	=	noise bandwidth
S(f)	=	noíse power densíty
e _{ff}	=	noise spectral density
l	=	vortex effective mean free path
V_o :	=	"correlation" voltage

L J Review of Flux Flow Noise

FIRST ORDER APPROXIMATION:

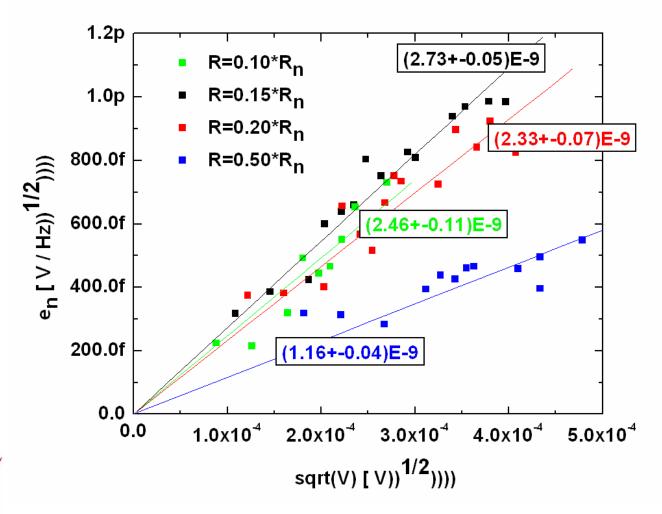
Replace V with
$$\frac{V}{1+V_{V_o}}$$
, where $V_o = const.$
(dependent on V_1)
 $\Rightarrow e_{ff} = \sqrt{\phi_o \frac{V}{1+V_{V_o}} \frac{l}{w}}$

for
$$V << V_o$$
 $\rightarrow e_{ff} = \sqrt{\phi_o V \frac{l}{w}}$

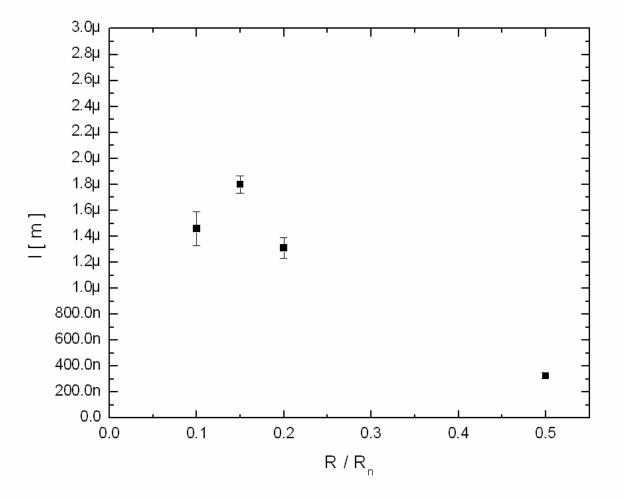
for
$$V >> V_o$$
 \rightarrow $e_{ff} = \sqrt{\phi_o V_o \frac{l}{w}}$

V	=	vortex speed
η	=	viscosíty
ϕ_{o}	=	flux quantum
J	=	current densíty
μ_{o}	=	magnetization of vacuum
H_{C2}	=	crítical field
ρ_n	=	normal state resistivity
V_1	=	voltage generated by one vortex
V	=	voltage
Ι	=	current
N	=	average number of vortices
V _{RM}	s =	voltage noise root mean square
τ	=	vortex average lífetíme
B	=	noise bandwidth
S(f)	=	noise power density
e _{ff}	=	noise spectral density
l	=	vortex effective mean free path
V_o	=	"correlation" voltage

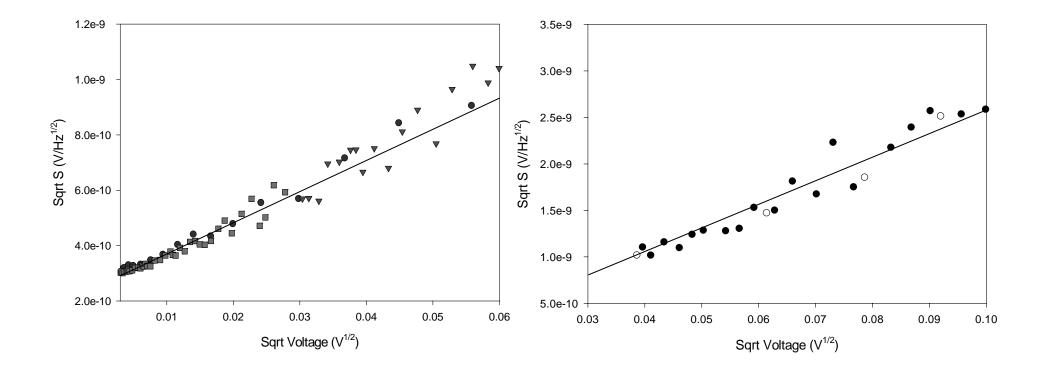
Experimental evidence



Data courtesy of the X-ray Astrophysics group at the NASA/GSFC



Experimental Evidence



Hengsong Zhang, Qian Chen and Fulin Zuo (see poster for details)

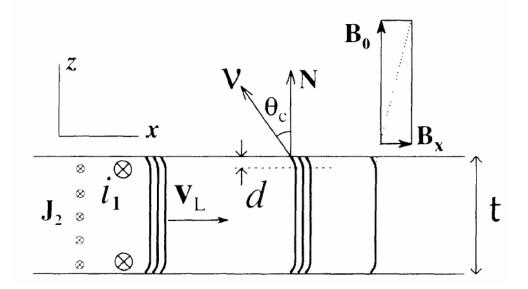
DEPARTMENT OF PHYSICS

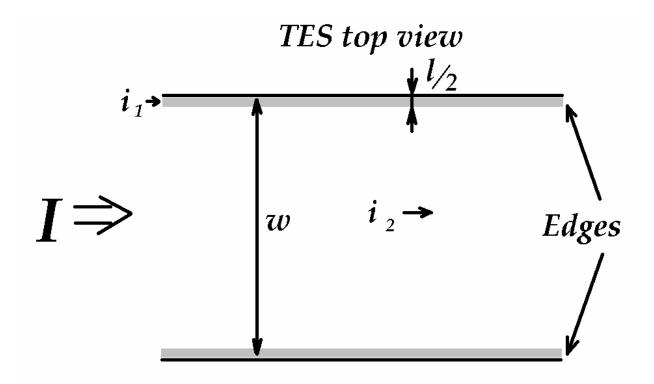
- What is the mean free path *l*?
- Why do we have a dependence of the noise on α ?

→ Different Approach to Flux Flow Noise

Placais, Matheiu, and Simon, PRB 49, 15815 (1994)

- 1. A 3D treatment is necessary
- 2. In the film there are two separate currents contributions: a nondissipative current at the edges and a dissipative current in the bulk
- 3. The non-dissipative current at the edges is of the order of the critical current i_c (A/cm)
- 4. It is the non-dissipative term that generates the noise





 $i_1 =$ non-dissipative current per unit width $i_1 \sim i_c$ (critical current per unit width) $i_2 =$ dissipative current per unit width $\Rightarrow I = i_1 \cdot l + i_2 \cdot w \sim i_2 \cdot w$

Flux Flow Model

 $e_{ff} = \sqrt{\phi_o V}$

Flux Flow Model Revisited

$$S(f) = \frac{V_{RMS}^2}{B} = \frac{RIV_1}{w} = \phi_0 V \qquad S(f) = \frac{V_{RMS}^2}{B} = \frac{R(i_1l)V_1}{w} = \frac{R(i_1l)V_1}{W} \cdot \frac{I}{I} = \frac{RIV_1}{W} \cdot \frac{(i_1l)}{I} \approx \phi_0 V \frac{i_1l}{i_2w}$$

$$e_{ff} = \sqrt{\phi_o V \frac{i_1 l}{i_2 w}} \approx \sqrt{\phi_o V \frac{i_C \cdot l}{i \cdot w}}$$

$\int Detector sensitivity \alpha$

Energy to break vortexes

 $k_B T_{KT} \sim E_J$ Kosterlitz-Thouless Transition Temperature

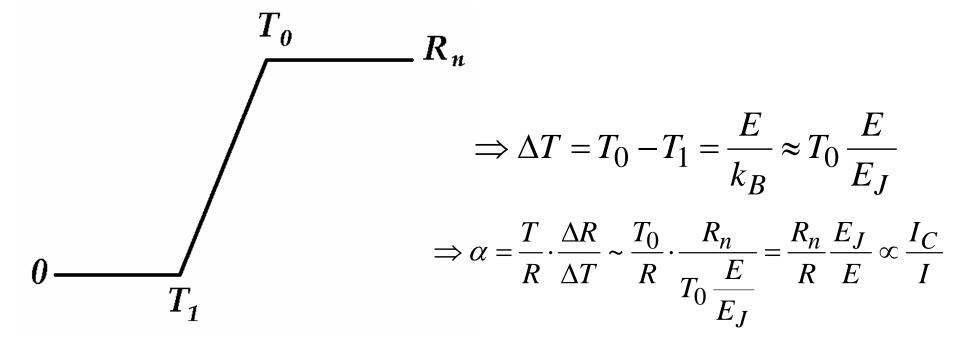
 $T_{KT} \sim T_0$

 $E_J = \frac{\hbar I_C}{2\rho}$

 $k_BT_1=E_J-E\approx kT_0-E$

For low Resistance (Beaseley and Mooji, 1979)

E = Energy provided by current (or magnetic field)



 $e_{ff} \approx \sqrt{\phi_0 V \frac{l}{w} \alpha}$