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Review of Flux Flow Noise
v  =  vortex speed 
η  =  viscosity 
φo  =  flux quantum 
J  =  current density 
µo  = magnetization of vacuum 
HC2  =  critical field 
ρn =  normal state resistivity 
V1 =  voltage generated by one vortex 
V =  voltage 
I =  current 
N =  average number of vortices 
VRMS =  voltage noise root mean square 
τ =  vortex average lifetime 
B =  noise bandwidth 
S(f) =  noise power density 
eff =  noise spectral density 
l =  vortex effective mean free path 
Vo =  “correlation” voltage 

ALL expressions are in SI units



Review of Flux Flow Noise
Vortices move perpendicular to current flow with speed: 

 

η
φ Jv o=

 
 

Where 
 

n

Coo H
ρ
µφ

η 2= . 

 
Each vortex generates a voltage 
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v  =  vortex speed 
η  =  viscosity 
φo  =  flux quantum 
J  =  current density 
µo  = magnetization of vacuum 
HC2  =  critical field 
ρn =  normal state resistivity 
V1 =  voltage generated by one vortex 
V =  voltage 
I =  current 
N =  average number of vortices 
VRMS =  voltage noise root mean square 
τ =  vortex average lifetime 
B =  noise bandwidth 
S(f) =  noise power density 
eff =  noise spectral density 
l =  vortex effective mean free path 
Vo =  “correlation” voltage 



Review of Flux Flow Noise
If the resistance at the transition is completely due to flux 

flow motion 
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For SMALL N this generates a RMS voltage noise: 
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The average lifetime of each vortex is give by 
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This is the same result obtained by Knoedler and 
Voss [Phys. Rev. B 26, 449 (1982)] assuming 

“vortex” shot noise. 
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ISSUE #1: The observed noise is too small
Introduction of vortex mean free path
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But 1V
VN =

 for large voltage the noise is reduced due to 

the correlation (saturation effect). 
 

 

ISSUE #2: For large N the vortexes are correlated
eff is smaller
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FIRST ORDER APPROXIMATION: 
 

Replace V with 
oV

V
V

+1 , where Vo=const. 

(dependent on V1) 
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for V<<Vo  w
lVe off φ=  

 

for V>>Vo  w
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Experimental evidence

Data courtesy of the X-ray Astrophysics group at the NASA/GSFC



Mean Free Path



Experimental Evidence
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Hengsong Zhang, Qian Chen and Fulin Zuo (see poster for details)



Open Questions

• What is the mean free path l?

• Why do we have a dependence of the noise on α?

Different Approach to Flux Flow Noise



Flux Flow Noise Revisited
Placais, Matheiu, and Simon, PRB 49, 15815 (1994)

1. A 3D treatment is necessary

2. In the film there are two separate currents contributions: a non-
dissipative current at the edges and a dissipative current in the bulk

3. The non-dissipative current at the edges is of the order of the critical
current ic (A/cm)

4. It is the non-dissipative term that generates the noise



Flux Flow Noise Revisited

i1 = non-dissipative current per unit width 
i1 ~ ic (critical current per unit width)

i2 = dissipative current per unit width
I = i1 · l + i2 · w ~ i2 · w



Flux Flow Noise Revisited
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Flux Flow Model                   Flux Flow Model Revisited
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Detector sensitivity α
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Energy to break vortexes

Kosterlitz-Thouless Transition Temperature

For low Resistance (Beaseley and Mooji, 1979)
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Flux Flow Noise Revisited
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