

Light Detector development for CRESST Dark Matter Search

- CRESST light detector
- First results with silicon-on-sapphire light detector

E. Pantic, I. Bavykina, A. Bento, D. Hauff, R. Lang, F. Petricca, F. Pröbst and W. Seidel

Max-Planck-Institut für Physik, Munich, Germany

WIMP Direct Detection

Low energy transfer (< 40 keV)

TES III Workshop

Cryogenic detectors

Low energy threshold
Excellent energy resolution

Detector module - background discrimination

Simultaneous measurement of phonons and scintillation light to discriminate nuclear recoil signals from radioactive background

Challenges of the light detector

About 1% of energy deposited in CaWO4 is detected as scintillation light

> Small amount of energy deposited in CaWO4 by WIMP-nucleus elastic scattering (< 40 keV)

The sensitivity of the light detector is crucial for the background discrimination in the energy range relevant for WIMP search

Light detector performance defines the discrimination threshold

CRESST II prototyping phase detector module

18.08.2006

Silicon light detector

Si wafer (30 x 30 mm²) with 200Å SiO₂ layer read out by W-SPT with Al-phonon collectors

Al-phonon collectors Thin film heater and thermal link

Silicon light detector - performance

Energy resolution: $\Delta E_{FWHM} = 20 \text{ keV}_{ee} @ E = 122 \text{ keV}_{ee}$ Energy threshold: $E_{thresh} \approx 2.8 \text{ keV}_{ee}$ (5 σ) (few photons)

WIMP-nucleon cross section

TES III Workshop

Light detector - design optimization

Au thermal coupling

Light detector - material optimization

Silicon-On-Sapphire

Silicon absorption properties + Sapphire transport properties

Absence of oxide layer on the sapphire side \downarrow Reduced position dependence of the response

Light detector development - results

Silicon light detector

Silicon-On-Sapphire (SOS) light detector

Silicon light detector resolution

TES III Workshop

Silicon light detector resolution

TES III Workshop

18.08.2006

SOS light detector resolution

Silicon/SOS light detector

Deposited energy- ΔE = 6keV	equal		
Operating temperature-T _{op}	equal	\checkmark	scaling
Heat capacity of thermometer- C_e	equal	✓	scaling

Silicon light detector $\longrightarrow \Delta T = ~39 \mu K$ SOS light detector $\longrightarrow \Delta T = ~60 \mu K$

1.5x !

Noise considerations

Noise considerations

18.08.2006

Further investigation of: the performance of SOS light detectors

within CRESST-II detector module

origin of noise in the light detector

Further development of :

- the light detector thermometer geometry
- material for the light detector substrate

Additional slides

TES III Workshop

Read out circuit

