Study of transition steepness for wiring and absorber coupling geometries

Jan van der Kuur, Henk Hoevers, Piet de Korte, Alexander Germeau, Marcel Bruin

Netherlands Organisation for Scientific Research

Outline

- Setup/performance improvements
- Background of the new detector development
- Transition steepness study
- Absorber coupling
- Recent results: Noise/performance analysis

Performance data

- The EMI shielding has been improved by enclosing the FLL electronics in a Faraday cage and by optimizing the EMI filters
- Improved energy resolution data on our standard single pixel devices
- Long term stability of the set-up
- Good results on array pixels

Set-up improvement by a sarcophagus

The EMI shielding has been improved by enclosing the FLL electronics in a Faraday cage and by optimizing the EMI filters

<u>Perfomance data (single pixel)</u> 'Best' SRON single pixel with central absorber (X049) dE = 3.4 eV @ 6 keV; optimum digital filter applied

=> Improved energy resolution

Stability issues

16 hours acquisition - SRON single pixel, central absorber (X049,) dE = 4.9 eV @ 6 keV; using analog filter; 255.000 counts! No digitized data available, 3.7 eV expected

=> Improved stability

Performance data array pixel Best' SRON array pixel with central absorber dE = 5.3 eV @ 6 keV; analog filtering applied Note: the expected after digital filtering: ~ 4 eV (but no data yet)

=> Improved energy resolution

Fully functional 5 x 5 arrays with Cu and Cu/Bi absorbers

Successful prototyping of 32 x 32 pixel arrays

But: no electrical connections

Motivation microcalorimeter development

- Classical SRON design requires mushroomabsorber with large overhang => position dependence expected (LTD-11).
 - => design not suitable for high filling factors

• Central absorber designs fixes the α -values of the TES, whereas engineering is required.

Approach

- α -tuning following Joel Ullom's scheme (metal structures on top of the TES)
- Wiring material study, to characterize possible influence on α
- Absorber coupling through a thin isolation layer covering the TES, to avoid absorption position dependence.

Steepness transition in TiAu bi-layers (1)

Bare TES (as reference) $\alpha \approx 850$ on membrane

Note: this α is similar to what NIST finds for MoCu

Standard SRON TES with central absorber $\alpha \approx 100$ on membrane ($\alpha \approx 200$ on solid substrate)

 α is affected due to a combination of the geometry (proximity effect + current distribution) and stress

Steepness transition in TiAu bilayers (2) - dots

Steepness transition (3)– bars

=> α -values of barred devices are suppressed too much in TiAu devices

Influence wiring type and layout on $\boldsymbol{\alpha}$

Results:

- Material type (Nb, Al, and Ti) not of influence on transition steepness
- Wiring layout not of influence on transition steepness

Resulting approach: Nb wiring for arrays, with Al contact leads.

Absorber coupling

Status at LTD-11:

- Lateral diffusion times in mushroom type absorbers possibly troublesome.
- Mushroom type absorbers hard to manufacture

Approach:

Support of mushroom hat by insulating layer between TES and absorber, coupling through metallic contacts, combined with α control through Cu dots.

Absorber coupling

Status at LTD-11:

- Lateral diffusion times in mushroom type absorbers possibly troublesome.
- Mushroom type absorbers hard to manufacture

Approach:

Support of mushroom hat by insulating layer between TES a absorber, coupling through metallic contacts, combined with α -control through Cu dots.

Absorber coupling through central contact

- 1. Dotted patterns control alpha
- 2. Dot patterns covered with 100 nm SiO (dots not connected to absorber)
- 3. A central contact provides coupling of absorber and TES

Fully processed array

Different dot densities Absorber disconnected from dots by insulator Absorber TES coupling via central contact (bar or dot pattern)

Preliminary results on the new detector design

Absorber coupling: 100 nm SiO + contact window

- α tuning functional ullet
- First X-ray results: 7.1 eV (3 eV expected) ullet
- Hysteresis in IV curve, tunable by B-field ullet

RMS noise features suppressed by B-field

J. vd Kuur, TESIII Gainesville FL, august 18, 2006 21

"M-theory"

ITFN

Current noise (A/root(Hz))

Current noise (A/root(Hz))

α =12 M=2.5

α =160 M=25

Model parameters from impedance measurements **RON**

ITFN

"M-theory"

=> M-theory gives better fits but very high M-values

Summary and conclusions

- EMI susceptibility setup drastically decreased
- Better performance data on all existing sensors
- Cu dots on TiAu TESs give similar effects on α values
- Absorber coupling through contact windows produced and under study
- Experimental results too fresh for conclusive interpretations

