
ORCA Users Guide Version 0.1

D. Acosta 1 5/21/2001

ORCA Users Guide

Introduction

There are several steps to the simulation of physics events for CMS, as illustrated in
Fig. 1. The first is the generation of a proton-proton collision using an event generator,
which contains the computed scattering amplitudes for particle physics reactions and
applies them to simulate a real reaction. The generator used for our studies is PYTHIA,
and it can simulate nearly all known possible scatterings between the incoming protons as
well as many hypothetical ones. It produces an output file in Ntuple format that contains
all particles produced by the collision. It does not propagate the particles through the
detectors of the experiment, however. That step is conducted by the detector simulation
program CMSIM, which is based on the package GEANT. CMSIM allows all particles
produced by the event generator to interact with the material of the experiment according
to the laws of physics. It could be used to simulate the response of the detectors
themselves (the digitization step), but that part of the simulation is separated into another
program called ORCA. The separation is historic, and has to do with the switch from
Fortran to C++ software in the CMS collaboration. Eventually, everything will be in
ORCA. The output of CMSIM is a sequential file in Zebra format.

ORCA is the object-oriented reconstruction program for CMS analysis. It is responsible
for storing the Zebra files produced by CMSIM into a database known as Objectivity. It
runs the detector simulation step, the trigger simulation, and the final reconstruction of
the physics event recorded by the CMS detector. A user’s ORCA analysis generally
produces an Ntuple output, from which plots can be made.

It should be noted that all these simulation programs are generically referred to as Monte
Carlo programs because of their dependence on random number generation to decide
what physical process will occur.

ORCA Users Guide Version 0.1

D. Acosta 2 5/21/2001

Figure 1: The CMS event generation scheme.

Detector Simulation with CMSIM

There should be one primary directory related to cmsim and that is where all of these
commands should be executed.

The first thing is to guarantee that the computer is using the appropriate version of
cmsim. This is done by typing:

 cmsim cmsXXX

where XXX is the version number (presently 121).

The script called “submit_test” is run in order to create each new zebra file. This
script contains all the pertinent information about the events that will be generated.
Every time that new zebra files are created, it is useful to check this file in order to make
sure that events are being created with the correct information.

The script can take up to three arguments. The first argument sets a variable called
MYPT, which somehow defines the Pt range of the muons created. The second argument
sets a variable called NEVENTS, which is just the number of events created. Finally, the
third argument sets a variable called JOB, which defines the job number associated with

Signal Zebra files
with HITS

ORCA
Digitization

(merge signal
and MB)

Objectivity
Database

HEPEVT
ntuples

CMSIM

HLT Algorithms
New

Reconstructed
Objects

M
C Prod.

O
RCA

 Prod.

H
LT Grp

D
atabases

ORCA
ooHit

Formatter
Objectivity
Database

MB

Objectivity
Database

Catalog import

Catalog import

Objectivity
DatabaseObjectivity
DatabaseytivitcejbOytivitcejbO
esabataDesabataD

Objectivity
DatabaseObjectivity
DatabaseytivitcejbOytivitcejbO
esabataDesabataD

M
irrored D

b’s
(CERN

, U
S, Italy,…)

Geant3
P

yt
hi

a
6

O
R

C
A

ORCA Users Guide Version 0.1

D. Acosta 3 5/21/2001

the zebra file. If you do not specifically define these variables when running the script,
they are automatically set to a default value which can be found in the first several lines
of code of the submit_test script.

The important information to be set in the submit_test script is the kinematics of the
muon. This information is found about 1/3 of the way through the code and should look
something like:

C One ptcle mu+ etamin etamax fimin fimax ptmin ptmax
C KINE 3 5. 0.8 2.4 0.0 360.0 $MYPT. 100.
KINE 3 5. 1.2 1.6 0.0 360.0 $MYPT. $MYPT.

The line that is not commented out will be used. The meaning of each value should be
self-explanatory. The “.” after the $MYPT variable is mandatory.

When submit_test has been appropriately edited, the zebra files are created using the
following command.

 nohup submit_test [Pt events job] >&! logptX &

The “nohup” command allows the user to log off the server without cancelling the job.
The three parameters in brackets can be specified, or left blank to choose the default. The
“>&!” redirects the output to the file called “logptX” where X is usually the value of
MYPT whether or not a file by that name already exists. The final & causes the job to
run in the backround without tying up the command line.

Note: If you want to set the value for NEVENTS, then you must set the value for MYPT.
You cannot just leave a space.

Each job creates a .log, .rz, and .fz file (random and sequential access Zebra files) with a
name like:

cms121_1mu_pt[MYPT]_[NEVENTS]_.*
where the .fz file is the one that contains the simulation results (the other is an Ntuple
with some histograms).

Creating a New ORCA Working Area

To begin working with ORCA, you need to create a working area using the “scram”
compile and build tool of CMS:

 scram project ORCA ORCA_4_5_1

This creates a new subdirectory in the current directory called ORCA_4_5_1, which is
the current release version of ORCA. Because of some problems with creating databases
using this version, you may have to create another area for the older version
ORCA_4_4_0.

ORCA Users Guide Version 0.1

D. Acosta 4 5/21/2001

Once you have this working area, you need to put some code there. This is accomplished
by “checking out” the packages from the CVS software repository at CERN. To access
this repository, you must first set an environment variable (if it has not been set already):

 setenv CVSROOT :pserver:anonymous@cerncvs.cern.ch:???

Then you must login with the following password:
 cvs login
 98passwd

The code should go into the “src” subdirectory of your working area, so you must type:

 cd ORCA_4_5_1/src

Then you can check out packages related to creating databases:

 cvs co –r ORCA_4_5_1 Utilities/Configuration
 cvs co –r ORCA_4_5_1 Examples

The tag “-r ORCA_4_5_1” gets the version of the code appropriate for the version of
ORCA you set up. If you leave it out, you get the latest version (known as the “head”),
which is not guaranteed to work.

To check out the latest muon trigger packages, do:

 cvs co Trigger/L1CSCTrigger
 cvs co Trigger/L1CSCTrackFinder

If you already checked out a package, but want to update it to the latest version, type the
following from within a package:

 cvs update

Notice that in each of these packages, you have an interface/ subdirectory that
contains the class header files, and a src/ subdirectory with the C++ implementation.
The test/ area contains an example main program that you can link into an executable.

Compiling New ORCA code

Once you have checked out the ORCA code you need, you must compile it into libraries.
Again, you use the SCRAM compile and build tool. You execute the following command
at the highest level you want to build. If you execute it within a package, only that
package gets built. If you execute it at the top of the src/ subdirectory of your ORCA
working area, all packages will be built:

 scram build clean

ORCA Users Guide Version 0.1

D. Acosta 5 5/21/2001

 scram build

The first line is only sometimes needed. It starts everything from scratch. Normally you
just type the second line, and SCRAM will compile only that code that has changed since
the last build. By the way, “scram build” can be shortened to “scram b”.

Creating and Filling Databases

So far, this only works reliably for version ORCA_4_4_0. To work with this version,
you must first type

 gcc_old

Then to return to working with ORCA_4_5_1 (which can read files produced by the
older version) type:

 gcc_new (or maybe gcc_pro on certain machines)

Creating
The first step is to create a directory in your ORCA working area where all the databases
will be stored. This step only needs to be done once, as you can store many file sets in
one database. You can just call this directory “databases.” Once you have this, go to the
directory:

 ORCA_4_4_0/src/Utilities/Configuration/src/

From here, you should be able to create the new database by typing something like:

 makefd.local /dip01/tmp2/micah/databases/dbname

where “dbname” is the name that you want to give to the new database.

Filling

The filling of a database with CMSIM data is done in the directory:

 ORCA_4_4_0/src/Examples/ExProduction/

Before you can fill a database, you must issue a “scram b” command to compile the
code in this directory.

There is one file that needs to be edited: writeHits.csh, and it may need to be
copied from someone since it is not included in the CVS repository. It contains several
lines of code. The first does not need to be edited. The second defines the owner of the
database and should contain your name as the last word. The third line defines the name
that you will use later to reference the CMSIM information that you are about to store.

ORCA Users Guide Version 0.1

D. Acosta 6 5/21/2001

The next several lines do not in general need to be changed, but the section that gets
written into the file .orcarc in general does. This is the section where particular
runtime configurations are set for your job. You should edit here the part that specifies
the CMSIM file to be formatted into the database, and the number of events.

It should all look something like this:

eval `scram runtime -csh`
setenv OO_FD_BOOT
/dip01/tmp2/micah/databases/single_mu_440/ORCATEST.boot
setenv CARF_OUTPUT_OWNER Micah
setenv CARF_OUTPUT_DATASET_NAME pt10low
setenv DETINPUT
/dip01/tmp2/cms/reconstruction/datafiles/cms121_1/cms_geom_out.rz

change it to your cmsim file
FZInputFiles=/dip01/tmp2/micah/cms121/cms121_1mu_pt10_4000_.fz

set the number of events to process
SimApplication:MaxEvents=-1

Note: Setting MaxEvents=-1 processes all the events from the cmsim file.

Once these two files have been properly edited, the commands that fill the database are as
follows:

 source writeHits.csh
 nohup ../../../bin/Linux__2.2/writeHits >&! file.log &

Once again, file.log will contain the information about the progress of filling the
database. It should be named in such a way as to be recognizable in the future.

Note: If you make a mistake while filling the database, it is important that you know that
redoing the process described above will append to the database as opposed to
overwriting! This means that if the script writeHits.csh that you run is interrupted,
you need to select a new name in writeHits.csh before retrying.

Creating Trigger Ntuples from Databases with ORCA

The creation of Ntuple files from databases is done in the following directory:

ORCA_4_5_1/src/Trigger/L1CSCTrackFinder/test/

Before you can read a database, you must issue the “scram b” command to compile
and link the code in this directory into an executable.

ORCA Users Guide Version 0.1

D. Acosta 7 5/21/2001

One of the scripts used to configure the reading of the database is called
orcatest.csh. Files such as this can be many lines long, but there are only a few that
will need to be edited regularly. They are as follows:

setenv OO_FD_BOOT /dip01/tmp2/micah/databases/single_mu_440/ORCATEST.boot

This line must be the location of the database dircetory that you are getting the
information from. The name ORCATEST.boot should always be the same, or at least
what you gave it in the writeHits step.

setenv CARF_INPUT_OWNER Micah
setenv CARF_OUTPUT_OWNER Micah2

These two lines define the owner. The input file owner must be the same as that used to
fill the database, and the output owner should be different. The latter comes into play
because the output of your analysis can also be stored in the database (thus saving future
CPU time). Technically speaking, writeHits only stored the particle hit locations in
the CMS detector, whereas writeDigis or your analysis can store the detector
digitization results.

setenv CARF_INPUT_DATASET_NAME pt10low
setenv CARF_INPUT_EVCOLL_NAME pt10low

These two lines must contain the name of the dataset that you used in the
writeHits.csh file when filling the database.

 RecApplication:MaxEvents = 4000

This last line defines the number of events that you are processing. Usually, it will be the
same as the number that you used for NEVENTS when creating the CMSIM file.

