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Maxwell’s Equations and EM Waves 
 
Disclaimer: These lecture notes are not meant to replace the course textbook.  The 
content may be incomplete.  Some topics may be unclear.  These notes are only meant to 
be a study aid and a supplement to your own notes.  Please report any inaccuracies to the 
professor. 
 

Maxwell’s Equations 
 
Let’s summarize all the electromagnetic equations we have learned so far, both integral 
and differential forms: 
 

1. Gauss’ Law for electric field: 
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2. Gauss’ Law for magnetic field: 
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3. Faraday’s Law of Induction: 

 

C S
d d

t
∂

⋅ = − ⋅
∂∫ ∫E s B A    or         

t
∂

∇× = −
∂
BE  

 
4. Ampere’s Law and Maxwell’s Law of Induction: 
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Derivation of Electromagnetic Wave Equation 
 
Now let’s see how we can combine the differential forms of Maxwell’s equations to 
derive a set of differential equations (wave equations) for the electric and magnetic fields. 
Let’s assume we solve these equations in a region without any electric charges present 
(ρ=0) or any currents (j=0). 
 
Start with Maxwell’s Law:  
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Now take the curl of this equation: 

 ( ) ( )0 0 t
μ ε ∂
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Now it can be shown as a proof in vector calculus that: 
 ( ) ( ) 2∇× ∇× = ∇ ∇⋅ −∇B B B  
where 0∇⋅ =B  by Gauss’ Law for magnetic fields. And since Faraday’s Law tells us:  
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which is a second order differential equation for each of the 3 components of the 
magnetic field. (It is a wave equation it turns out). 
 
Now we can follow a similar derivation for the electric field starting with Faraday’s Law: 

t
∂

∇× = −
∂
BE  

Now take the curl of this equation: 
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Now using the same vector calculus proof: 
 ( ) ( ) 2∇× ∇× = ∇ ∇⋅ −∇E E E  
where 0∇⋅ =E  by Gauss’ Law for electric fields in vacuum. And since Maxwell’s Law 
tells us:  
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 Interestingly this is the exact same differential wave equation as for magnetic fields! 
 

Solution to Wave Equation 
 
The general form of the wave equation is: 
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where we have expanded the Laplacian ( 2∇ ) operator and defined 
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Solutions to this partial differential equation have the general form: 
 
 ( ) ( ), sinmt tω φ= ⋅ − −F x F k x  
 
But let’s use complex notation to see how the solution works: 
 
 ( ) ( ), expmt i tω= ⋅ −⎡ ⎤⎣ ⎦F x F k x  
 
where we just take the imaginary or real part to get the physical solution. 
 
Plugging into the wave equation yields: 
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Thus, the solution to the wave equation that is a consequence of Maxwell’s equations in 
vacuum is a sinusoidally varying function for both the electric and magnetic fields. It is a 
traveling wave solution, which becomes more apparent if we write the solution in this 
form: 
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Note that Maxwell’s Equations predict a unique velocity for the electromagnetic waves, 
which is just c, the speed of light. Thus, for Maxwell’s equations to be correct in all 
reference frames we are led to Einstein’s theory of Special Relativity! 
 
The wavenumber k is actually a vector, as is the velocity v. They both point in the 
direction of the traveling wave. Notice that as time increases, ⋅k xmust increase 
proportionately to maintain the same phase. 
 
Now both the electric and magnetic fields have the same form of the wave solution. 
These solutions have field directions Em and Bm, and the solution itself fills all space (a 
little unrealistic!) But the magnetic and electric fields are also related.  
Let’s explore some properties of the derived electromagnetic wave: 
 
Consider Gauss’ Law: 
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Which implies that the electric field direction is perpendicular to the velocity direction,or 
wave direction. We can derive the same thing for magnetic field direction: 
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Now consider Faraday’s Law: 
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Note that the last step can only be satisfied if the electric and magnetic waves have 
exactly the same time and space form (same phase, velocity, wavenumber). 
 
Now both Em and Bm are perpendicular to k, and by this equation Bm is perpendicular to 
Em as well!  
 m m⇒ ⊥ ⊥k E B  
 
This is an important feature of electromagnetic waves. They are transversely polarized, 
and the electric and magnetic components are perpendicular to each other. 
 
Moreover, the magnitudes are related: 
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Thus, there is only one independent wave solution. If you know the form of the electric 
field, the magnetic field is completely specified by the above relations. 
 
Note that there is another way to represent the above equation if we substitute in for the 
angular frequency and the wavenumber: 
 

 ( )
2

2 /
        (or  more generally)

f
k

f c v

ω π
π λ

λ

=

⇒ =

 

 
Now the wide range of electromagnetic wave phenomena are described by just different 
choices of the frequency (or alternatively wavelength, as it is not independent). Lowest in 
frequency (largest wavelength) are radio waves (kHz-MHz), increasing to microwaves 
(GHz), infrared radiation (1014 Hz), visible light (~1015Hz), ultraviolet light, x-rays, and 
finally gamma rays! 
 
 
 
 


