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Relativity 4 
 
Disclaimer: These lecture notes are not meant to replace the course textbook.  The 
content may be incomplete.  Some topics may be unclear.  These notes are only meant to 
be a study aid and a supplement to your own notes.  Please report any inaccuracies to the 
professor. 
 

Relativistic Momentum 
 
Newton’s 2nd Law can be written in the form 
 F p

=
d
dt

 

where the non-relativistic momentum of a body is p u= m  where u x
=

d
dt

.  However, 

because of the Lorentz transformation equations, d
dt
x  is measured differently in different 

inertial frames. Thus, Newton’s 2nd Law would not have the same form in different 
frames.  We need a new definition of momentum to retain the definition of force as a 
change in momentum. 
 
Suppose p x

= m d
dτ

, where τ is the proper time in the object’s rest frame.  Every observer 

will agree on which frame is the rest frame.  Also, since ′ = ′ =y y z zand , the transverse 
momentum (py and pz)  will be invariant for a Lorentz transformation along the x axis. 
(This would not be the case if we did not use the proper time in the definition).  We can 
rewrite this momentum definition as follows: 

Recall that momentum is a 
vector quantity.  Conservation of 
momentum, which still applies 
in Special Relativity, implies 
that each component of 
momentum is conserved.

p x x
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d

m d
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at u is the velocity of the object in a reference frame, not the velocity of a 
ce frame relative to another. 
 
definition of momentum, the mass m=m0  is the “rest mass”.  That is, it is the mass 
bject in its rest frame.  Sometimes γ m  is referred to as the “relativistic mass”, 
at we can retain the Newtonian definition of momentum as p u= m .  In this sense, 
ss of an object grows as its velocity increases.  But this convenient trick can be 

atic.  As we shall see, the kinetic energy, for example, is not ½ mv2. 
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Relativistic Force 
 
With the previous relativistic definition for momentum, we can retain the usual definition 
for force: 

 ( )
2 2

1          where  =    and  
1 /

u u
d d d d dm m
dt dt d dt dt u c

γ γ
τ

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠ −

p x xF u u  

 
It is useful to consider how force transforms under a Lorentz Transformation: 
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According to the addition of velocity formulae, the transform
perpendicular to the direction of the Lorentz Transformation 
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So for the perpendicular force, which can be written as: 
 

d d dm m
dt d dτ τ⊥ ⊥= =

xF u  

 
it transforms as: 
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where we assume no acceleration in the direction parallel to t
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Relativistic Energy 
 
Now work is defined as force applied over a distance. It corresponds to the expended 
energy to accelerate a body.  If the force and path are constant,  
 
  W F d= ⋅
 
More generally, if the force and path vary, then a line integral must be performed from 
initial position 1 to final position 2. 
 
  W d12 1

2
= ⋅z   F s

 
The work applied to a body translates to a change in the kinetic energy since energy must 
be conserved.  If we assume that the body is initially at rest, then the final kinetic energy 
is equal to the work expended: 
  

d s 

u 
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W K d

dt
m dt d

K m dt d
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            where we have used  

  

Integrate by parts:
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You can check this 
integral by differentiation

 
Thus, we get for the relativistic kinetic energy: 
 

K mc mc mc= − = −γ γ 2 2 1a f 2  
 
 
 
T
eq
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D

his final expression for the kinetic energy looks like nothing like the non-relativistic 
uation K .  However, if we consider velocities much less than the speed of 

ht, we can see the correspondence: 

mu=
1
2

2
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   using the binomial expansion

=     for 
 

 
So at low velocities there is no difference between the definition of kinetic energy in 
Special Relativity from that in Newtonian Mechanics. 
 
Now let’s consider the opposite limit when the velocity approaches the speed of light.  In 
that case, the kinetic energy becomes infinite as the relativistic factor γ goes to infinity.  
This is another way of saying that objects cannot exceed the speed of light, because it 
would take an infinite amount of energy. 
 
Now let’s rewrite the equation involving the kinetic energy: 
 
 
 

E mc K mc≡ = +γ 2 2

This equation has the form of kinetic energy plus potential energy equals total energy.  
What is the potential energy? It is the term: 
 

E mc2=   
 
w
th
vi
 
Ex
½
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th
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D

0

hich we refer to as the rest energy.  As you know, this is Einstein’s famous equation 
at tells us that mass is another form of energy.  Mass can be converted into energy and 
ce versa.  How much energy?  Let’s see: 

ample: Suppose that a 1 kg mass moves at a velocity u = 1 m/s.  The kinetic energy is 
 m u2 = ½ J. (We can use the non-relativistic equation because the velocity is much 
uch smaller than the speed of light.) The rest mass energy is mc2 19 0 10 6= ×.  J. Clearly 
ere is a tremendous amount of energy in 1 kg of mass.  That is why nuclear weapons 
ve the power that they do, because they convert a significant amount of mass into 
ergy. 

onservation of Energy: 
e have learned in earlier physics courses that kinetic energy does not have to be 
nserved in an inelastic collision.  Likewise, mass does not have to be conserved since it 
n be converted into energy.  However, the total energy (kinetic, rest mass, and all other 
tential energy forms) is always conserved in Special Relativity.  Momentum and 
ergy are conserved for both elastic and inelastic collisions when the relativistic 
finitions are used. 
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Relationship between Energy and Momentum 
 
Using the Newtonian definitions of energy and momentum,  
E mu p m=

1
2

2  and  u= , we can write: 
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ow consider the relativistic definitions: 
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hus the equivalent relationship between energy and momentum in Relativity is: 

  E  
m

=
2

E p c m c m c E p c2 2 2 2 4 2 4 2 2= + = −       or equivalently    2
his is another example of Lorentz Invariance.  No matter what inertial frame is used to 
ompute the energy and momentum, E p c2 2 2−  always given the rest energy of the 
bject.  Energy and momentum take the role of time and space in the other Lorentz 
variant quantity ∆ .  In fact, we refer to ( ,s , , ) ( , , , )t x y z E p p px y z and   as four-vectors, 

nd the “lengths” of these vectors are these Lorentz-invariant expressions we derived.  

articles without mass are a special case   
⇒ =E pc  

 and pc can also be written: E mc pc mu= c=γ γ2  and  .   
he only way we can reconcile these last two definitions with E pc=  is to set the 
elocity to c.  Massless particles must travel at the speed of light. 
s we will learn, light itself is composed of particles (photons).  To travel at the speed of 
ght, these particles must be massless. 
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The Electron-Volt Energy Unit 
 
The Lorentz force law is F E v B= + ×qa f , where E is the electric field and B is the 
magnetic field.  The work done to move a charged particle in an electric field only is: 
 

( )

2 2

12 1 1

2 1

  

     

W d q

q V V

= ⋅ = ⋅

= −
∫ ∫F s E sd

 

 
The electric potential is φ (such that the electric field V= −∇E ).  We can summarize the 
work done by; 
 
 
 

       potential differenceW q V V= ∆ ∆ =
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onsider the work done to move an electron across a potential difference of  1 Volt? 

= − × − = ×− −1 6022 10 1 1 6022 1019 19. . C  Vc ha f  J  

1 V

e--    q=-1.6022 x 10-19 C

his is a very small unit!  We define it as a new unit  
f energy, the electron-volt: 

1 6022 10 19 eV  J= × −.  

i

1

xample:  Express the electron rest mass energy in this new unit: 

m ce0
2 31 8 2

0

911 10 3 0 10 1

511 000

= = × ×
×

=

−. .

,

 kg  m / s eV
1.6022 10  J

 eV     (or 511 keV,  0.511 MeV,  0.000511 GeV)

-19c hc h  

e also can define new units for mass and momentum.  For example, the mass of the 
lectron can be expressed m .  In other words, if you multiply the mass 
y c

c/e = 0 511 2.  MeV
2, you get the rest energy in electron-volts. 

imilarly, we know that pc has units of energy, so momentum can be expressed in units 
ke MeV / c. In other words, if you multiply by c, you get an energy in electron-volts. 
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Invariant Mass 
 
 We can now apply the relativistic definitions of energy and momentum to 
calculations of particle collisions.  In particular, we can compute the rest mass of a 
particle formed when two particles annihilate into pure energy and then form a new 
particle. 
 
Example: An electron and a positron (an anti-electron) annihilate with equal and 
opposite momentum: .  (Note the new momentum unit).  The collision 
produces a new particle called the J/ψ in the following reaction: .  What is 
the mass of this new particle? 

p = 155.  GeV / c
e e J− ++ → /ψ

 
 We need to compute the invariant mass of the electron-positron initial state to 
determine the rest mass of the new particle: 
 

 

Mc E p c E p
p p p c c
E E E

E p c m c

E E
Mc E

tot tot tot tot

tot

tot

tot

2 2 2 2

1 2

1 2

1 1
2 2 2 4 2 2

1 2
2

155 155 0

155 0 000511 155

155 155 31

= −

= + = − =
= +

= + = + ≈

=

⇒ = = + =

  where   and  are the total energy and momentum
 GeV /  GeV /     by conservation of momentum

   by conservation of energy

 GeV  GeV  GeV

   because the magnitude of the momentum (and mass) is the same
 GeV  GeV

. .

. . .

. . .

b g b g
 

 
The J/ψ particle has a mass of 3.1 GeV/c.  Note that we have made extensive use of the 
new Lorentz-invariant quantity involving energy and momentum 
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Binding Energy 
 

As we have learned, mass is a form of potential energy.  It can be converted into 
energy, or energy can be converted into mass.  Because of this, mass does not have to be 
conserved in reactions.  If you throw two balls at each other and they stick together (an 
inelastic collision), the resulting mass is not necessarily the sum of the individual masses 
of the two balls. 

This surprising result makes sense when we consider that mass is just another 
form of potential energy.  When two balls stick together, there must be some attractive 
force holding the composite system together.  In the case of the hydrogen atom, an 
electron and proton are bound by an attractive electromagnetic force.  To separate the 
electron and proton (i.e. ionize hydrogen), one must overcome the attractive force, and 
that takes energy.  In other words, the particles have larger electromagnetic potential 
energy when separated than together.  This potential energy is: 

V e
r

=
− 2

04πε
 

which increases as the separation distance r increases.   
 Where does this increase in energy go, since we know the total energy must be 
conserved?  It goes into the rest mass energies of the electron and proton in the case of 
hydrogen.  Another way of putting it is that the hydrogen atom has a mass that is less 
than the sum of the separate masses of the electron and proton.  The difference in the rest 
mass energies of the separate objects from the combined system is called the binding 
energy: 
 
  BE M M c= −separate bound  b g b gm r 2

 
In the case of hydrogen, the binding energy is 13.6 eV; that is, hydrogen has a mass that 
is 13.6 eV less than the sum of the masses of the electron and proton. 
 Let’s consider another example.  The deuteron is a bound system of a neutron and 
a proton.  The binding energy is given by: 
 

 

BE M M M c

BE c c c

BE

= + −

= + −

=

n p H  

 MeV /  MeV /  MeV /

 MeV

2b g b g c ho t
m r

2

2 2939 57 938 28 187563

2 22

. . .

.

2  

 
Clearly nuclear binding energies are much larger than atomic binding energies!  We will 
explore this more when we study nuclear physics toward the end of this course. 
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Reaction Energy 
 
 Closely related to binding energy is the concept of reaction energy.  Not all 
composite systems have a mass less than the sum of its constituent masses, and some 
fundamental particles spontaneously decay into particles whose combined mass is less 
than that of the parent.  In these cases, energy is released in the decay or reaction because 
of the difference in rest mass energies.  We define this reaction energy as: 
 
  Q M M c= −initial products final products  b g bm r 2g
 
As you can see, it is just the negative of the binding energy.  If Q is positive, we say that 
the reaction or decay is exothermic; that is, it releases energy.  If Q is negative, the 
reaction or decay is endothermic; it takes energy to make it happen. 
 
Example:  Consider the spontaneous decay of a neutron: . We can 
calculate the energy released in this decay by taking the difference in mass of the left-
hand side from the right-hand side.  The neutrino (

n p e e→ + +− ν

ν e ) will be discussed later in the 
nuclear and particle physics sections; what is relevant here is that its mass is essentially 
zero.  

  

Q M n M p M e c

Q c c

Q

= − −

= − −

=

−b g b g c ho t
m r

 

 MeV /  MeV  MeV  

 MeV

2
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