Waves and Interference
D. Acosta
Here is an example of a wave with no time dependence:
| > | y := sin(kx); |
Below is a plot of this wave, where k*x is in units of Pi. Two complete wavelengths are shown.
| > | plot(sin(kx*Pi),kx=0..4); |
![[Plot]](images/waves_2.gif)
Two waves which will completely interfere destructively are shown next:
| > | plot([sin(kx*Pi),sin(kx*Pi+Pi)],kx=0..4); |
Both waves have the same wavelength, but one has a phase shift of 180 degrees (Pi radians)
![[Plot]](images/waves_3.gif)
Two waves with the same wavelength but a 90 degree phase shift are shown next:
| > | plot([sin(kx*Pi),sin(kx*Pi+Pi/2),sin(kx*Pi)+sin(kx*Pi+Pi/2)],kx=0..4,color=[red,green,blue]); |
The resultant is also a wave with the same wavelength but different amplitude.
![[Plot]](images/waves_4.gif)
Now let's see what happen when we superpose two waves with slightly different wavelengths:
| > | plot([sin(k1x*Pi),sin(k1x*Pi/1.0625)],k1x=0..51); |
![[Plot]](images/waves_5.gif)
Beats are formed when these two waves interfere:
| > | plot([sin(k1x*Pi)+sin(k1x*Pi/1.0625),2*cos(0.058824/2*k1x*Pi),-2*cos(0.058824/2*k1x*Pi)],k1x=0..51,color=[red,green,green]); |
![[Plot]](images/waves_6.gif)
The intensity of the resultant wave is given by the square of the amplitude:
| > | plot([(sin(k1x*Pi)+sin(k1x*Pi/1.0625))**2,4*cos(0.058824/2*k1x*Pi)**2],k1x=0..51,color=[red,green]); |
![[Plot]](images/waves_7.gif)
Click on the next line and press <Enter>
| > | with(plots): |
Warning, the name changecoords has been redefined
Now let's consider travelling waves
The next figure shows a travelling wave moving to the right.
Click on the picture and press the "play" button from the tool bar
| > | animate(sin((kx-wt)*Pi),kx=0..8,wt=0..8,frames=50); |
![[Plot]](images/waves_8.gif)
The next figure shows a travelling wave moving to the left.
Click on the picture and press the "play" button from the tool bar
| > | animate(sin((kx+wt)*Pi),kx=0..8,wt=0..8,frames=50); |
![[Plot]](images/waves_9.gif)
Now let's see what happens when two travelling waves interfere:
| > | animate(sin((k1x-w1t)*Pi)+sin((k1x-w1t)*Pi/1.0625),k1x=0..51,w1t=0..70,frames=51,numpoints=200); |
In this case the phase velocity and the group velocity are the same. Both the carrier wave and the modulation envelope move at the same speed.
![[Plot]](images/waves_10.gif)
In the next case the carrier wave and modulation envelope move at different speeds:
| > | animate(sin((k1x-w1t)*Pi)+sin((k1x/1.0625-w1t/1.045)*Pi),k1x=0..51,w1t=0..51,frames=51,numpoints=200); |
In this last case, the group velocity (the beat velocity) is much less than the phase velocity (the carrier wave velocity).
![[Plot]](images/waves_11.gif)
Now let's see how the group velocity can be larger than the phase velocity:
| > | animate(sin((k1x-w1t)*Pi)+sin((k1x/1.0625-w1t/1.1)*Pi),k1x=0..51,w1t=0..45,frames=51,numpoints=200); |
![[Plot]](images/waves_12.gif)
Now let's save some animations as GIFs:
| > | #plotsetup(gif,plotoutput=`e:twr.gif`,plotoptions=`transparent=true,height=200,width=320`); |
| > | #animate(sin(kx*Pi-wt*Pi),kx=0..4,wt=0..4,frames=32); |
| > | #plotsetup(gif,plotoutput=`e:twl.gif`,plotoptions=`transparent=true,height=200,width=320`); |
| > | #animate(sin(kx*Pi+wt*Pi),kx=0..4,wt=0..4,frames=32); |
| > | #plotsetup(default); |
| > |