Summary of PRS/Muon Activities

D.Acosta
University of Florida

Focus of Work

L2 and L3 higher level triggers, in preparation for the DAQ TDR due out next year

→ Muon-Tracker matching

Staging scenarios

- → Assume initial luminosity of 2´10³³
- → DAQ input bandwidth reduced to 25 or 50 kHz
 - □ Apply safety factor of 3, and split equally among muon, e/gamma, and jet triggers (so BW could be as low as 2.5 kHz)
- → No ME 4
- → No RPC trigger in endcap
- → No readout for inner part of ME 1/1
 - □ Originally was strip "OR"

Production

- → Many headaches for INFN production centers because of Objectivity problems and ORCA crashes
- → Somewhat under control for ORCA5, samples now available and results are coming out

Plan for Large 12M Event Production

- → ECAL e/gamma group wants it for a calibration study
- → Production will start ASAP at regional centers (including Florida)
- Production will not include pile-up (just single min bias events)
 - □ Otherwise production requires too much effort
- → Events are unbiased, so a good cross check of our rates and punch-through
 - □ From unbiased samples in Florida, I've seen that the trigger rate is about the same whether you explicitly do the pile-up in CARF or whether you just scale the single event rate.
- → Sample size prohibits storing all events in database, so we only get Ntuples
 - □ So we get just one shot at this
- → PRS group is finalizing the Ntuple code
- → Smaller 0.5Mevt sample will be kept in a database for further studies

L1 single muon trigger rates

L1 di-muon trigger rates, $p_{T,2} \ge 4 \text{ GeV/c}$

25-Sep-01

M.Fierro/HEPHY

Playing the game of thresholds

'Iso-rate' lines for single muon and di-muon Minimum Bias events

2.0 kHz

Efficiencies for $W \rightarrow \mu$ and $Z/\gamma \rightarrow \mu\mu$ signals for a fixed L1output bandwidth

25-Sep-01

Combined Rate Results

 $L=2\cdot10^{33}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}$

	DAQ Bandwidth = 50kHz (L1 m = 6 kHz)			DAQ Bandwidth = 37.5 kHz (L1 m = 4 kHz)			DAQ Bandwidth = 25 kHz (L1 m = 2.5 kHz)		
	(muon, calo) cuts (GeV)	Ind. Rates (kHz)	Cum. Rates (kHz)	(muon, calo) cuts (GeV)	Ind. Rates (kHz)	Cum. Rates (kHz)	(muon, calo) cuts (GeV)	Ind. Rates (kHz)	Cum. Rates (kHz)
Muon	16	2.5		18	1.9		18	1.9	
Di-muon	(4, 4)	0.73	0.65	(6, 6)	0.17	0.14	(8, 8)	0.05	0.03
mÅ Isol e/g	(6, 8)	1.90	1.65	(8, 15)	0.13	0.10	(14, 20)	0.02	0.01
mÅt jets	(6, 65)	0.61	0.36	(8, 70)	0.32	0.23	(14, 75)	0.10	0.04
mÅ Jets	(6, 100)	0.18	0.01	(8, 100)	0.15	0.01	(14, 100)	0.06	0.00
L1 Total Rate 5.2			<u>5.2</u>			<u>2.4</u>			<u>2.0</u>

25-Sep-01 M.Fierro/HEPHY 14

L3 Seed Generation

Start from L2 reconstructed muons:

- Get muon trajectory at innermost muon station
 - from local muon reconstruction
- Propagate to outer tracker surface
 - use GeaneWrapper
- Rescale errors
 - open window for track reconstruction
- Find start layer(s) inside tracker
 - 2 options : outside-in , inside-out
- Get compatible hits from the layer
 - if there are no compatible hits go to next layer
- Create one or more seeds for each L2 muon
 - set max. number of seed layers for each L2 muon (default = 3)

Global Efficiency

L2 p_T Resolution

L2: 1/p_T resolution

L3 p_T Resolution

L3: 1/p_T resolution

th LvI-3

Summary

Group is very active, but not much U.S. involvement beyond L1

Code and tools are in pretty good shape

→ First pass at reconstruction software

Don't need to know C++ to participate, you can work from standard Ntuples produced by the group

We need more help! Lots of staging studies to do, HLT studies, etc.

Meetings are bi-weekly, you can connect from your PC using VRVS software

→ Next one is this Tuesday, 10:30 EDT

