Paul Avery

PHZ4390
Sep. 16, 2013

Bonus Question 4

Due Friday, Oct. 4

The Schrodinger equation describing the hydrogen atom involves the radially symmetric potential $U(r)=-\alpha \hbar c / r$. To solve it we write the equation in spherical coordinates and use separation of variables to create separate equations for r, θ and ϕ, yielding the time independent wavefunction $\psi(r, \theta, \phi)=R_{n l}(r) Y_{l}^{m}(\theta, \phi)$, where $R_{n l}(r)$ depends on the integers n and l, with $n>0$ and $0 \leq l<n$ is the eigenvalue describing the total angular momentum.
$Y_{l}^{m}(\theta, \phi) \propto P_{l}^{m}(\cos \theta) e^{i m \phi}$ is a spherical harmonic, where $P_{l}^{m}(\cos \theta)$ is an associated Legendre polynomial, l was described previously and m is the z component of angular momentum ($-l \leq m \leq l)$. Only the radial wavefunction $R_{n l}(r)$ depends on the potential. The functions are normalized as follows (note the r^{2} term)

$$
\begin{aligned}
& \int_{0}^{\infty} R_{n l}^{2}(r) r^{2} d r=1 \\
& \int\left|Y_{l}^{m}\right|^{2} d \Omega=2 \pi \int_{-1}^{1} P_{l}^{m}(\cos \theta)^{2} d \cos \theta=1
\end{aligned}
$$

1. (3 pts) Write down the radial Schrodinger equation for this potential. You can google the answer, best described on Wikipedia.
2. (3 pts) Write down the radial solutions R_{10}, R_{20}, R_{21} and R_{30}.
3. $(4 \mathrm{pts})$ Plot the probability distributions for the solutions in (2), e.g. $r^{2}\left|R_{n l}(r)\right|^{2}$.
